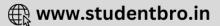
Ordinary Thinking

Objective Questions

Bonding and hybridisation in organic compounds

1.	In methane molecule, the hydr	ethane molecule, the hydrogen atoms around carbon are arranged						
	as	[DPMT 1980; MNR 1981; MP PET 1997, 99]						
	(a) Square planar	(b) Tetrahedral						
	(c) Triangular	(d) Octahedral						
2.	In carbon tetrachloride, four	valence of carbon are directed to four						
	corners of	[CPMT 1973, 77]						
	(a) Rectangle	(b) Square						
	(c) Tetrahedron	(d) None of these						
3.	In alkene (ethene) number of	sp^2 hybrid carbon atoms are						
	(a) 1	(b) 2						
	(c) 3	(d) 0						
4.	Each carbon atom in benzene	e is in the state of hybridization						
		[CPMT 1973, 83, 89; MP PMT 1993;						
		KCET (Med.) 1999; DCE 2001]						
	(a) sp^3	(b) sp^2						

(c) sp (d) s^3p


5.	Which of the following hybridisation has highest percentage of <i>s</i> - character [BHU 1986]
	(a) sp^3 (b) sp^2
	(c) <i>sp</i> (d) None of these
6.	The hybridisation present in C_2H_2 is [EAMCET 1993]
	(a) sp (b) sp^2
	(c) sp^3 (d) dsp^2
7.	What hybrid orbitals will form the following compound
	$H_3C - CH = CH - CH_2 - CH_3$ [AFMC 1991]
	(a) sp and sp^3 (b) sp^2 and sp^3
	(c) sp and sp^2 (d) Only sp^3
8.	The compound in which carbon uses only its sp^3 hybrid orbitals
	for bond formation is [IIT-JEE 1989]
	(a) $HCOOH$ (b) $(NH_2)_2 CO$
	(c) $(CH_3)_3 COH$ (d) $(CH_3)_3 CHO$
9.	A straight chain hydrocarbon has the molecular formula $\ C_8 H_{10}$.
	The hybridisation for the carbon atoms from one end of the chain to
	the other are respectively sp^3 , sp^2 , sp^2 , sp^3 , sp^2 , sp^2 , sp and
	sp . The structural formula of the hydrocarbon would be[CBSE PMT 1992]
	(a) $CH_3 - C \equiv C - CH_2 - CH = CH - CH = CH_2$
	(b) $CH_3 - CH_2 - CH = CH - CH_2 - C \equiv C - CH = CH_2$
	(c) $CH_3 - CH = CH - CH_2 - C \equiv C - CH = CH_2$
	(d) $CH_3 - CH = CH - CH_2 - CH = CH - C \equiv CH$
10	Which of the following has a head formed by everlap of $sn - sn^3$

- 10. Which of the following has a bond formed by overlap of $sp sp^3$ hybrid orbitals [MNR 1993; UPSEAT 2001, 02]
 - (a) $CH_3 C \equiv C H$
 - (b) $CH_3 CH = CH CH_3$

(c)
$$CH_2 = CH - CH = CH_2$$

- (d) $HC \equiv CH$
- **11.** The bond between carbon atom (1) and carbon atom (2) in compound $N \equiv C CH = CH_2$ involves the hybridised carbon as[**11T-JEE 198**]
 - (a) sp^2 and sp^2 (b) sp^3 and sp
 - (c) sp and sp^2 (d) sp and sp

2.	Number of π bonds in CH	$H_2 = CH - CH = CH - C \equiv CH$ is		(a) 8	(b) 10	
		[Kurukshetra CEE 1991; KCET 2000]		(c) 11	(d) 12	
	(a) 2	(b) 3	21.	Which of the following stat	ements is false for isope	ntane [MP PET 1996]
	(c) 4	(d) 5		(a) It has three CH_3 groups of the three CH_3 groups of the three CH_3 groups of the three thr		
3.	Number of π electrons pr					
	(a) 4	[AFMC 1991] (b) 6		(b) It has one CH_2 grou	ıp	
	(a) 4 (c) 10	(d) 14		(c) It has one <i>CH</i> group		
			T tool-		is not bonded to hydrog	
4.		cyclobutadienyl anion $(C_4H_4)^{-2}$ is[11T-JE	E 199 <u>2</u> 2.	The number of σ bonds in		[MP PET 1996]
	(a) 2	(b) 4 (1) 2		(a) 6 (c) 12	(b) 9 (d) 18	
15.	(c) 6 Homeletic fission of $C = C$	(d) 8 C bond in ethane gives an intermediate in	23.	In benzene the total numbe		[MP PMT 1997]
.J.	which carbon is	[IIT-JEE 1992]		(a) 3	(b) 6	[//// //// /////
	(a) sp^3 hybridised	(b) sp^2 hybridised		(c) 9	(d) 12	
			24.	The number of sp^3 hybrid	. ,	cloberene are[MP PMT 10
	(c) <i>sp</i> hybridised	(d) sp^2d hybridised	24.		(b) 3	
16.	In the reaction			(a) 2 (c) 4	(d) 6	
	Br > C = C < Br	$\xrightarrow[Catalyst]{H_2} BrCH_2 CH_2Br$	25.	The number of π bonds in	()	
	H = 1 = 2 = H = C	atalyst 3 4	-		2	[MP PMT 1999]
	The hybridisation states of	carbon atoms 1, 2, 3, 4 are		(a) 1	(b) 2	
		[MP PET 1994]		(c) 3	(d) 4	
	(a) 1 and 2 sp^2 ; 3 and 4	sp^3	26.	Example of sp^2 hybridizat	tion is	[CPMT 1997]
	(b) 1 and 2 sp^2 ; 3 and 4	4 <i>sp</i>		(a) CH_3^+	(b) CH_3	
	(c) 1, 2, 3 and 4 <i>sp</i>			(c) $C_2 H_5^+$	(d) $C_2 H_5$	
	(d) 1, 2 sp^3 ; 3, 4 sp^2				2 3	
17.		s given below is there more than one kind	27.	Select the molecule which h	has only one π – bond	
	of hybridisation $(sp, sp^2,$			() CH - CH	(1) CU C	[Pb. PMT 1998]
	(i) $CH_3CH_2CH_2CH_3$			(a) $CH \equiv CH$	(b) $CH_2 = CH_2$	
	(ii) $CH_3 - CH = CH$			(c) $CH_3CH = CH_2$		= CHCOOH
		5	28.	Carbon atoms in the compo	ound $(CN)_4 C_2$ are	
	(iii) $CH_2 = CH - CH =$	$= CH_2$		() 11.1 1		[Roorkee 1999]
	(iv) $H - C \equiv C - H$	[CBSE PMT 1995]		(a) <i>sp</i> hybridized		
	(a) (ii) and (iv)			(b) sp^2 hybridized		
0	(c) (<i>ii</i>) and (<i>iii</i>)	(d) (<i>ii</i>)		(c) sp and sp^2 hybridize	ed	
18.	Examine the following com functional groups are often	nmon chemical structures to which simple n attached		(d) <i>sp</i> , sp^2 and sp^3 hy	bridized	
	~ ·	\sim /	29.	Acetylene molecules contair		[DCE 1999]
	(i) (i)	(ii)	-	(a) 5σ bond		
				(b) 4σ bond and 1π bo	ond	
	\checkmark			(c) 3σ and 2π		
		(iv) $CH_3CH_2CH_2CH_2 -$		(d) 3σ and 3π		
	(iii)		30.	Number of unhybridised or	bitals in vinyl acetylene	are
			30.			[RPMT 1999]
			30.		. ·	[
	(v) $H_2C = C < \frac{H}{H}$	ve essentially planar geometry	30.	(a) 2	(b) 3	[
	(v) $H_2C = C < \frac{H}{H}$	ve essentially planar geometry [CBSE PMT 1995]	-	(c) 4	(d) 6	
	(v) $H_2C = C < \frac{H}{H}$ Which of these systems hav (a) (<i>i</i>) and (<i>v</i>)		30.	(c) 4 Maximum bond energy of C	(d) 6 C - H bonds is found in	
	(v) $H_2C = C < \frac{H}{H}$ Which of these systems hav (a) (<i>i</i>) and (<i>v</i>) (c) (<i>ii</i>), (<i>iii</i>) and (<i>iv</i>)	[CBSE PMT 1995] (b) (<i>ii</i>) and (<i>iii</i>) (d) (<i>iv</i>)	-	(c) 4Maximum bond energy of (a) Ethane	(d) 6 C – H bonds is found in (b) Ethene	the compound [RPMT 19
19.	(v) $H_2C = C < \frac{H}{H}$ Which of these systems hav (a) (<i>i</i>) and (<i>v</i>) (c) (<i>ii</i>), (<i>iii</i>) and (<i>iv</i>) The structure of di-chloror	[CBSE PMT 1995] (b) (<i>ii</i>) and (<i>iii</i>) (d) (<i>iv</i>) methane is [MP PMT 1995]	31.	 (c) 4 Maximum bond energy of C (a) Ethane (c) Ethyne 	(d) 6 C - H bonds is found in	the compound [RPMT 19 the three
19.	(v) $H_2C = C < \frac{H}{H}$ Which of these systems hav (a) (<i>i</i>) and (<i>v</i>) (c) (<i>ii</i>), (<i>iii</i>) and (<i>iv</i>) The structure of di-chloron (a) Tetrahedral	[CBSE PMT 1995] (b) (<i>ii</i>) and (<i>iii</i>) (d) (<i>iv</i>) methane is [MP PMT 1995] (b) Trigonal	-	 (c) 4 Maximum bond energy of 0 (a) Ethane (c) Ethyne Ethylene possess 	(d) 6 C – H bonds is found in (b) Ethene (d) Equal in all	the compound [RPMT 19
19.	(v) $H_2C = C < \frac{H}{H}$ Which of these systems hav (a) (<i>i</i>) and (<i>v</i>) (c) (<i>ii</i>), (<i>iii</i>) and (<i>iv</i>) The structure of di-chloror	[CBSE PMT 1995] (b) (<i>ii</i>) and (<i>iii</i>) (d) (<i>iv</i>) methane is [MP PMT 1995] (b) Trigonal (d) Hexagonal	31.	 (c) 4 Maximum bond energy of 0 (a) Ethane (c) Ethyne Ethylene possess 	(d) 6 C – H bonds is found in (b) Ethene (d) Equal in all	the compound [RPMT 19 the three

CLICK HERE

(»

🕀 www.studentbro.in

	(d) Four sigma and one pi bond	(c) 1, 3-pentadiene (d) eta -butylene
33.	The hybridization involved in the six carbon atoms of benzene is[BHU 1999]45.	In which of the following species is the underlined carbon having
	(a) $3sp^3$, $3sp^2$ (b) $3sp^3$, $3sp$	sp ³ hybridisation [AIEEE 2002]
	(c) All $6sp$ (d) All $6sp^2$	(a) $CH_3 \underline{C}OOH$ (b) $CH_3 \underline{C}H_2OH$
34.	1, 3-butadiene has [JIPMER 2000]	(c) $CH_3 \underline{C}OCH_3$ (d) $CH_2 = \underline{C}H - CH_3$
	(a) sp and sp^2 hybridised <i>C</i> -atoms 46.	The $H - C - H$ bond angle in CH_4 is [MP PET 2002]
	(b) sp , sp^2 and sp^3 hybridized <i>C</i> -atoms	(a) 109°28' (b) 107°28'
	(c) Only sp^2 hybridised <i>C</i> -atoms	(c) 90° (d) 180°
	(d) Only <i>sp</i> hybridised <i>C</i> -atoms 47.	The hybridisation of carbons of $C-C$ single bond of
35.	Which of the following $C-H$ bond has the lowest bond	$HC \equiv C - CH = CH_2$ is [RPMT 2002]
	dissociation energy [CBSE PMT 2000]	(a) $sp^3 - sp^3$ (b) $sp - sp^2$
	(a) Primary (1°) $C-H$ bond	(c) $sp^3 - sp$ (d) $sp^2 - sp^3$
	(b) Secondary (2°) $C-H$ bond 48.	The shape of ethylene molecule is [AFMC 2002]
	(c) Tertiary (3°) $C-H$ bond	(a) Square planar (b) Furan
	(d) All of these	(c) Trigonal planar (d) Tetrahedral
36.	Number of σ and π bonds present in 1- butene-3-yne respectively 49. are (RPMT 1999; MP PET 2000; DCE 2000)	Acetylene molecule has carbon in [Kerala (Engg.) 2002]
	(a) $7\sigma, 3\pi$ (b) $5\sigma, 2\pi$	(a) sp - hybridisation (b) sp^2 - hybridisation
	(c) $8\sigma_3\pi$ (d) $6\sigma_2\pi$	(c) sp^3 - hybridisation (d) sp^3d - hybridisation
37.	(u) (u) <th>In the formation of methane molecule, carbon makes use of [DPMT 2001; MP PMT 2002]</th>	In the formation of methane molecule, carbon makes use of [DPMT 2001; MP PMT 2002]
57.	(a) $CH_3CH_2CH_2CH_3$ (b) $CH_3C \equiv CCH_3$	(a) sp -hybridised orbitals (b) sp^2 -hybridised orbitals
	(c) $CH_3C \equiv CH$ (d) $CH_2 = CH - CH = CH_2$	(c) sp^3 -hybridised orbitals (d) Unhybridised orbitals
38.	A carbon-carbon triple bond in ethyne $(-C \equiv C-)$ consists of 51 .	In graphite <i>C</i> -atom is instate [CPMT 2002]
30.	[AMU 2000]	(a) sp^3 (b) sp
	(a) All σ bonds	(c) sp^2 (d) None of these
	(b) Two σ bonds and one π -bond 52.	How many π -bonds are present in naphthalene molecule
	(c) One σ bond and two π bonds	[RPMT 2002]
	(d) All π bonds	(a) 3 (b) 4 (b) 5
39.	Toluene has[MP PMT 2000; Kerala CET 2005](a) 6σ and 3π bond(b) 9σ and 3π bond53.	(c) 5 (d) 6 Hybridisation state of <i>C</i> in diamond is [RPMT 2002]
	(c) 9σ and 6π bond (d) 15σ and 3π bond (d) 15σ and 3π bond	(a) sp (b) sp^2
40.	In compound X, all the bond angles are exactly $109^{o}28'$, X is[DPMT 2000]	(c) sp^3 (d) sp^3d
•	(a) Chloroform (b) Carbon tetrachloride 54.	The number of σ and π bonds present in pent-4-ene, 1-yne is[AIIMS 2002; CPA
	(c) Chloromethane (d) Iodoform	(a) 10, 3 (b) 3, 10
41.	Which of the following hybridization is known as trigonal	(c) 4, 9(d) 9, 4Which one of the following is more acidic[DPMT 2002]
	hybridization [MH CET 2000] 55.	(a) Butane (b) 1-butene
	(a) sp^3 (b) sp	(c) 1-butyne (d) 2-butyne
	(c) sp^2 (d) dsp^2 56.	Graphite is soft while diamond is hard because [BHU 2003] (a) Graphite is in powder form
42.	The types of hybridization present in 1, 2- butadiene are [MH CET 2000]	(b) Diamond has sp^2 hybridization but graphite has
	(a) sp, sp^2 and sp^3 (b) sp^2 and sp^3	sp^3 hybridization
		(c) Graphite is in planar form while diamond is in tetrahedral form
40	(c) sp^2 and sp (d) sp and sp^3 The <i>C U</i> hand distance is largest in [PHII 2001]	(d) Graphite is covalent and diamond is ionic
43.	The $C-H$ bond distance is longest in[BHU 2001]57.(a) C_2H_2 (b) C_2H_4	Hybridization of 1 and 2 carbon atoms in
		$CH_2 = C = CH_2$ [BHU 2003]
	(c) C_2H_6 (d) C_6H_6	(a) sp, sp (b) sp^2, sp^2
44.	Conjugated double bond is present in [RPMT 1999; JIPMER 2001]	(c) sp^2, sp (d) sp^3, sp^2
	(a) 1, 2-butadiene (b) 1, 3-butadiene 58.	Hydrogen bonding is maximum in [UPSEAT 2003]

					(a) Trans-2-butene (b) 1, 3-Dimethylbenzene
	(a) C_2H_5OH		$CH_3 - O - CH_3$		(a) <i>Trans</i> -2-butene (b) 1, 3-Dimethylbenzene (c) Acetophenone (d) Ethanol
	$(c) (CH_3)_2 C = O$	(d)	CH ₃ CHO	6.	Resonance structure of molecule does not have
59.			n 2, 5-dimethyl-4-ethylheptane[E /	MCET 2	
	(a) 2 (a) 4	(b) (d)	-		(a) Identical arrangement of atoms
6 -	(c) 4	()	-		 (b) Nearly the same energy content (c) The same number of paired electrons
60.			have sp^2 hybridised carbon [AIEE	E 2004]	(d) Identical bonding
	(a) Acetonitrile (c) Acetone	(b) (d)	Acetic acid Acetamide	7.	All bonds in benzene are equal due to
61					[Roorkee 1990; KCET 1998]
61.	Allyl cyanide contain σ - and π -t	(1)	[MP PET 2004]		(a) Tautomerism (b) Inductive effect (c) Resonance (d) Isomerism
	(a) $9\sigma, 3\pi$	(b)	$9\sigma, 9\pi$	8.	(c) Resonance (d) Isomerism Aromatic properties of benzene are proved by
60	(c) $3\sigma, 4\pi$	(d)	$5\sigma, 7\pi$	0.	[MP PMT 1994]
62.	Strongest acid is $(I) = IIC = CII$	(1)	[MP PMT 2004]		(a) Aromatic sextet theory (b) Resonance theory
	(a) $HC \equiv CH$	(b)	C_2H_6		(c) Molecular orbital theory (d) All of these
	(c) $C_6 H_6$	(d)	CH ₃ OH	9.	Which of the following will show aromatic behaviour
63.	$-C \equiv C - bond$ is found in		[BHU 1982; MP PMT 1994]		[KCET 1996]
	(a) Ethene	(b)	Butene		
	(c) Ethyne	(d)	Glycerine		
	C	Ή _,			\sim
64.	Number of σ bonds in		[CPMT 1994]		
04.			[CPMT 1994]		
	(a) 6	(b)	15	10.	Which one of the following orders is correct regarding the inductive
	(c) 10	(d)	12		effect of the substituents [CBSE PMT 1998]
65.	Number of bonds in benzene	()	[DPMT 2005]		(a) $-NR_2 < -OR > -F$ (b) $-NR_2 > -OR > -F$
	(a) 6σ and 3π	(b)	12σ and 3π		(c) $-NR_2 < -OR < -F$ (d) $-NR_2 > -OR < -F$
	(c) 3π and 12π	(d)	6σ and 6π	11.	Benzene is unreactive because [KCET 1998]
66.	Which is most acidic of the follo		[] & K 2005]		(a) It has double bonds
	(a) Methane (c) 1-butene	(b) (d)	Acetylene Neo pontono		(b) It has carbon-carbon single bond
67.	The enolic form of acetone cont	• • •	Neo-pentane [Pb. PMT 2002]		(c) Carbon are sp^2 hybridised
	(a) 8 σ bonds, 2π -bonds and		• •		(d) π electrons are delocalised
	(b) 9σ -bonds, 1π -bond and	2 lone	e pairs	12.	Carboxylic acids are easily ionised. The main reason of this
	(c) 9σ -bonds, 2π -bonds an	d 1 lor	ne pairs		statement [UPSEAT 1999]
	(d) 10 σ -bonds, 1 π -bonds and	d 1 lon	e pairs		(a) Absence of α -hydrogen
					(b) Resonance stabilisation of carboxylate ion
	Dipole moment, reso	nan	ce and reaction		(c) Reactivity of α-hydrogen
	interme			10	(d) Hydrogen bond
				13.	C - C' bond length in benzene lies between single and double bond. The reason is [RPET 1999]
1.	Which has zero dipole moment		[NCERT 1990; BHU 2001]		(a) Resonance (b) Isomerism
	(a) <i>cis</i> -2-butene	(b)			(c) Metamerism (d) Inductive effect
2	(c) 1-butene Dinala mamant is shown by	(d)	2-methyl-1-propene	14.	Credit for the ring structure of benzene goes to
2.	Dipole moment is shown by (a) 1, 4-dichloro benzene		[DCE 1999]		[RPET 1999]
	(b) Cis-1, 2-dichloro ethane				(a) Wholer(b) Faraday(c) Kekule(d) Baeyer
	(c) Trans-1, 2-dichloro, 2-pente	ene		15.	(c) Kekule (d) Baeyer Polarisation of electrons in acroline may be written as
-	(d) Trans-1, 2-dichloro ether				[DCE 2000]
3.	Which compound shows dipole	mome	nt [RPMT 2002]		(a) $CH_2^{\delta-} = CH - CH^{\delta+} = O$
	(a) 1,4-di-chloro benzene(b) 1, 2-di-chloro benzene				
	(c) Trans-1, 2-di-chloro ethene				(b) $CH_2^{\delta^-} = CH - CH = O^{\delta^+}$
	(d) Trans-2-butene				(c) $CH_2^{\delta-} = CH^{\delta+} - CH = O$
4.	Which of the following is a pola	r com			(d) $CH_2^{\delta^+} = CH - CH = O^{\delta^-}$
	() 5 H		[MH CET 2003]		··· _
	(a) $C_2 H_6$	(b)	CCl_4	16.	In the mixture of conc. H_2SO_4 and HNO_3 the nitrating species
	(c) HCl	(d)	CH_4		is [MP PMT 2000]
5.	The dipole moment is the highe	st for	[AIIMS 2004]		(a) N_2O_4 (b) NO_2^+

(c)
$$NO_2$$
 (d) NO_2^-

- Which of the following are not aromatic [DCE 2001] (a) Benzene
 - (b) Cyclo-octatetrarenyl dianion
 - (c) Tropyllium cation
 - (d) Cyclopentadienyl cation
- 18. Arrangement of

17.

20.

 $(CH_3)_3 - C - (CH_2)_3 - CH - CH_3 - CH_2 - CH_3$ when attached to benzyl or an unsaturated group in increasing order of inductive effect is [A]EEE 2002]

- (a) $(CH_3)_3 C < (CH_3)_2 CH < CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_2 CH_3 CH_$
- (b) $CH_3 CH_2 < (CH_3)_2 CH < (CH_3)_3 C -$
- (c) $(CH_3)_2 CH \langle (CH_3)_3 C \langle CH_3 CH_2 CH_3 CH_2 \rangle$
- (d) $(CH_2)_3 C \langle CH_3 CH_2 \langle (CH_3)_2 CH CH_3 \rangle_2$

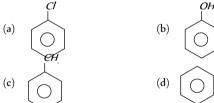
Which of the following is observed in ethylene molecule 19.

[MH CET 2002]

[Orissa JEE 2003]

[Kerala PMT 2004]

29.


- (a) Electromeric effect (b) Inductive effect (d) None of these (c) Homolytic fission
- Cyclopentadienyl anion is
 - (a) Aromatic (b) Non-aromatic
 - (c) Non-planar (d) Aliphatic
- Orbital interaction between the sigma bonds of a substitutent group 21. and a neighbouring pi orbital is known as
 - (a) Hyperconjugation
 - (b) Inductive effect
 - (c) Steric effect
 - (d) Dipole-dipole interactions
 - (e) Electric quadruple interactions
- Which of the following is the most stable compound 22.

[BHU 2004]

(a)
$$Ph_3\overset{+}{C}$$
 (b) $Ph_2\overset{+}{C}H$

(c) Ph_3CH_2 (d) $PhCH_{2}$

Which of the following will be most easily attacked by an 23. electrophile [MP PET 2004]

- Reactivity towards nucleophilic addition reaction of (1) HCHO, (11) 24 CH_3CHO , (III) CH_3COCH_3 is
 - [Orissa JEE 2004] (a) II > III > I(b) 111 > 11 > 1(c) 1 > 11 > 11(d) 1 > 11 < 111
- 25. Which of the following resonating structures of 1-methoxy-1, 3-[IIT Screening 2005] butadiene is least stable

(a)
$$CH_2 - CH = CH - CH = \overset{\oplus}{O} - CH_3$$

(b)
$$CH_2 = CH_2 - CH - CH = O - CH_3$$

 \oplus

(c)
$$\widetilde{CH}_2 - \widetilde{CH} - CH = CH - O - CH_3$$

(d)
$$CH_2 = CH - CH - CH - O - CH_3$$

26. Which amongst the following is the most stable carbocation [CBSE PMT 2005]

3

[IIT-IEE (Screening) 1993]

(d) $CH_3 CH_3$

(c)
$$CH_3$$

(i)
$$CH_3 - \overset{+}{C}H - CH_3$$

(ii)
$$CH_3 - CH - O - CH_3$$

(iii)
$$CH_3 - CH - CO - CH_3$$

(a)
$$(i) < (ii) < (ii)$$
 (b) $(i) > (ii) > (ii)$

(c)
$$(iij) > (ii) > (i)$$
 (d) $(ii) > (iij) > (i)$

28. The order of decreasing stability of the carbanions

> (1) $(CH_3)_3\ddot{C}$ (2) $(CH_3)_2 \ddot{C}H$ (3) $CH_3\ddot{C}H_2$ (4) $C_6 H_5 \ddot{C} H_2$ is [KCET 1996] (a) 1 > 2 > 3 > 4 (b) 4 > 3 > 2 > 1 (d) 1 > 2 > 4 > 3(c) 4 > 1 > 2 > 3 Choose the chain terminating step

(1)
$$H_2 \rightarrow H^{\bullet} + H^{\bullet}$$

(2)
$$Br_2 \rightarrow Br^{\bullet} + Br^{\bullet}$$

- $Br^{\bullet} + HBr \rightarrow H^{\bullet} + Br_{2}$ (3)
- (4) $H^{\bullet} + Br_2 \rightarrow HBr + Br^{\bullet}$

(5)
$$Br^{\bullet} + Br^{\bullet} \rightarrow Br_2$$
 [RPET 2000]
(a) 1 (b) 3
(c) 4 (d) 5

30. The compound, which gives the most stable carbonium on dehydrogenation [UPSEAT 2001]

(a)
$$CH_3 - CH - CH_2OH$$

 CH_3
 CH_3
(b) $CH_3 - CH_2 - OH$

$$CH_3$$

(c) $CH_3 - CH_2 - CH_2 - CH_2OH$

(d) $CH_3 - CH - CH_2 - CH_3$ CH_3

Which of the following requires radical intermediate 31.

> [Orissa JEE 2004] CH_3

(a)
$$CH_3 - CH = CH_2 + HBr \rightarrow CH_3 - CH - CH_Br$$

Br

(b)
$$CH_3 - CHO + HCN \rightarrow CH_3 - CH \lt OH$$

(c)
$$CH_3 - CH = CH_2 + HBr \rightarrow CH_3 - CH_2 - CH_2 - Br$$

(d)
$$CH_3CHO + NH_2OH \xrightarrow{H^+} CH_3 - CH = N - OH$$

Get More Learning Materials Here :

32.	Which of the following spec	cies is paramagnetic in nature		(c) RCOOH (d) HCl
		[NCERT 1984]	45.	Which gives monosubstituted product [DPMT 2005]
	(a) Free radical	(b) Carbonium ion		(a) <i>o</i> -dinitrobenzene (b) <i>m</i> -dinitrobenzene
	(c) Carbanion	(d) All the above		(c) <i>p</i> -dinitrobenzene (d) Nitrobenzene
33.		species the central <i>C</i> -atom is negatively	46.	An aromatic compounds among other things should have a π -
	charged	[NCERT 1985]	40.	electron cloud containing electrons where n can't be
	(a) Carbanion	(b) Carbonium ion		[] & K 2005]
. .	(c) Carbocation	(d) Free radical		(a) 1/2 (b) 3
34.	Which of the following free			(c) $\frac{1}{2}$ (c) $\frac{1}{2}$ (d) $\frac{1}{2}$
	(-) D -:	[NCERT 1982]	47.	Which of the following is an electrophile [] & K 2005]
	(a) Primary(c) Secondary	(b) Methyl (d) Tertiary	47.	
2 5	· · ·	tains three pairs of electrons		(a) H_2O (b) SO_3
35.	which of the following con	[BHU 1985]		(c) NH_3 (d) ROR
	(a) Carbocation	(b) Carbanion	48.	The presence of the chlorine atom on benzene ring makes the
	(c) Free radical	(d) None of these	•	second substituent enter at a position [] & K 2005]
36.	Which of the following cart			(a) <i>ortho</i> (b) <i>meta</i>
0		[NCERT 1983]		(c) para (d) ortholpara
	(a) Methyl	(b) Primary	49.	Which is the most stable carbocation [] & K 2005]
	(c) Secondary	(d) Tertiary		(a) iso-propyl (b) Triphenylmethyl cation
37.	.,	he most stable carbonium ion is		(c) Ethyl cation (d) π -propyl cation
		[IIT-JEE 1981]		
	(a) <i>sec</i> -butyl	(b) <i>ter</i> -butyl	_	
	(c) <i>n</i> -butyl	(d) None of these	_	Organic reactions and their mechanism
38.	In the compound given belo	DW		
	⊕	► •	1.	To which of the following four types does this reaction belong
	(γ)			$B^- + R - A \rightarrow B - R + A^-$ [Manipal MEE 1995]
				(a) Unimolecular electrophilic substitution
	Ť	Ŷ		(b) Bimolecular electrophilic substitution
	СООН			(c) Unimolecular nucleophilic substitution
	The correct order of the ac	idity of the positions (X), (Y) and (Z) is		(d) Billi Bi
	(a) $(Z) > (X) > (Y)$	(b) $(\mathcal{X}) > (\mathcal{Y}) > (Z)$	2.	An alkyl halide may be converted into an alcohol by
	(c) $(X) > (Z) > (Y)$	(d) $(\mathcal{Y}) > (\mathcal{X}) > (\mathcal{Z})$	4.	[Pb. PMT 2000]
39.	C-C bond length in benzen			(a) Elimination (b) Addition
	U	[MP PMT 1987; MP PMT 2001; AllMS 2001]		(c) Substitution (d) Dehydrohalogenation
	(a) 1.39 Å		-	
			3.	CH_3 $CH_2 - Cl$
	(b) 1.54 Å			
	(c) 1.34 Å			$[\bigcirc] \longrightarrow [\bigcirc]$
	(d) Different in different l	bonds		
40.	Heterolysis of carbon-chlori	ine bond produces		The above reaction proceeds through [AMU 2000]
		[MNR 1986; MP PET/PMT 1998]		(a) Nucleophilic substitution
	(a) Two free radicals			(b) Electrophilic substitution
	(b) Two carbonium ions			(c) Free radical substitution
	(c) Two carbanions			(d) More than one of the above processes
	(d) One cation and one ar	nion	4.	Geometry of reaction intermediate in SN^{1} reaction is
41				[MH CET 2001]
41.	In CH CH OH the h	and that undergoes beterebyin elegerate		[
	·	ond that undergoes heterolytic cleavage		(a) Tetrahedral (b) Planar
	most readily is	[IIT-JEE 1988]		
	most readily is (a) $C - C$	[11 T-JEE 1988] (b) <i>C</i> – <i>O</i>		(a) Tetrahedral(b) Planar(c) Triangular bipyramidal(d) None of these
	most readily is (a) $C - C$ (c) $C - H$	[11 T-JEE 1988] (b) <i>C</i> - <i>O</i> (d) <i>O</i> - <i>H</i>		(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these CH_3 CH_3
42.	most readily is (a) $C - C$ (c) $C - H$ Which of the following interview of the following intervie	[IIT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around	5.	(a) Tetrahedral(b) Planar(c) Triangular bipyramidal(d) None of these
42.	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter the carbon atom	[IIT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around [Orissa JEE 2003]	5.	(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these CH_3 CH_3 $H_3C - C - Br + KOH(Aq.) \rightarrow H_3C - C - OH + KBr$
42.	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter the carbon atom (a) Carbonium ion	[IIT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around [Orissa JEE 2003] (b) Carbanion ion	5.	(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these $\begin{array}{c} CH_{3} & CH_{3} \\ H_{3}C - \overset{ }{C} - Br + KOH(Aq.) \rightarrow H_{3}C - \overset{ }{C} - OH + KBr \\ \overset{ }{C}H_{3} & CH_{3} \end{array}$
-	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter the carbon atom (a) Carbonium ion (c) Free radical	[1IT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around [Orissa JEE 2003] (b) Carbanion ion (d) Carbene	5.	(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these $\begin{array}{c} CH_3 & CH_3 \\ H_3C - \overset{ }{C} - Br + KOH(Aq.) \rightarrow H_3C - \overset{ }{C} - OH + KBr \\ & & \\ CH_3 & CH_3 \end{array}$ above reaction is [RPMT 2003]
42 . 43 .	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter the carbon atom (a) Carbonium ion (c) Free radical A solution of D (+) - 2-ch	[IIT-JEE 1988] (b) C - O (d) O - H ermediate have the complete octet around [Orissa JEE 2003] (b) Carbanion ion (d) Carbene loro-2-phenylethane in toluene racemises	5.	(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these $\begin{array}{cccc} CH_3 & CH_3 \\ H_3C - C - Br + KOH(Aq.) \rightarrow H_3C - C - OH + KBr \\ CH_3 & CH_3 \\ \hline \\ above reaction is \\ (a) SN^1 \\ (b) SN^2 \\ \end{array}$ (b) SN ²
-	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter the carbon atom (a) Carbonium ion (c) Free radical A solution of D (+) - 2-ch slowly in the presence of	[IIT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around [Orissa JEE 2003] (b) Carbanion ion (d) Carbene Horo-2-phenylethane in toluene racemises is small amount of $SbCl_5$, due to the	5.	(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these $\begin{array}{c} CH_3 & CH_3 \\ H_3C - \overset{ }{C} - Br + KOH(Aq.) \rightarrow H_3C - \overset{ }{C} - OH + KBr \\ & & \\ CH_3 & CH_3 \end{array}$ above reaction is [RPMT 2003]
-	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter the carbon atom (a) Carbonium ion (c) Free radical A solution of D (+) - 2-ch slowly in the presence of formation of	[IIT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around [Orissa JEE 2003] (b) Carbanion ion (d) Carbene foro-2-phenylethane in toluene racemises is small amount of $SbCl_5$, due to the [IIT-JEE 1999]	5.	(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these $\begin{array}{cccc} CH_3 & CH_3 \\ H_3C - C - Br + KOH(Aq.) \rightarrow H_3C - C - OH + KBr \\ CH_3 & CH_3 \\ \hline \\ above reaction is \\ (a) SN^1 \\ (b) SN^2 \\ \end{array}$ (b) SN ²
-	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter the carbon atom (a) Carbonium ion (c) Free radical A solution of D (+) - 2-ch slowly in the presence of formation of (a) Carbanion	[IIT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around [Orissa JEE 2003] (b) Carbanion ion (d) Carbene Noro-2-phenylethane in toluene racemises i small amount of $SbCl_5$, due to the [IIT-JEE 1999] (b) Carbene		(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these $\begin{array}{c} CH_3 & CH_3 \\ H_3C - \overset{-}{C} - Br + KOH(Aq.) \rightarrow H_3C - \overset{-}{C} - OH + KBr \\ \overset{-}{C}H_3 & CH_3 \end{array}$ above reaction is [RPMT 2003] (a) SN^1 (b) SN^2 (c) E_1 (d) Both (a) and (b)
-	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter the carbon atom (a) Carbonium ion (c) Free radical A solution of D (+) - 2-ch slowly in the presence of formation of	[IIT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around [Orissa JEE 2003] (b) Carbanion ion (d) Carbene foro-2-phenylethane in toluene racemises is small amount of $SbCl_5$, due to the [IIT-JEE 1999]		(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these $\begin{array}{cccc} CH_3 & CH_3 \\ H_3C - C - Br + KOH(Aq.) \rightarrow H_3C - C - OH + KBr \\ CH_3 & CH_3 \\ \hline \\ above reaction is \\ (a) SN^1 \\ (b) SN^2 \\ (c) E_1 \\ (c) E_1 \\ (c) Both (a) and (b) \\ In electrophilic substitution reaction nitrobenzene is \\ \end{array}$
-	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter the carbon atom (a) Carbonium ion (c) Free radical A solution of D (+) - 2-ch slowly in the presence of formation of (a) Carbanion	[IIT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around [Orissa JEE 2003] (b) Carbanion ion (d) Carbene Noro-2-phenylethane in toluene racemises ' small amount of $SbCl_5$, due to the [IIT-JEE 1999] (b) Carbene (d) Carbene (d) Carbene		(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these $\begin{array}{cccccccccccccccccccccccccccccccccccc$
43.	most readily is (a) $C - C$ (c) $C - H$ Which of the following inter- the carbon atom (a) Carbonium ion (c) Free radical A solution of D (+) - 2-ch slowly in the presence of formation of (a) Carbanion (c) Free radical	[IIT-JEE 1988] (b) $C - O$ (d) $O - H$ ermediate have the complete octet around [Orissa JEE 2003] (b) Carbanion ion (d) Carbene Noro-2-phenylethane in toluene racemises ' small amount of $SbCl_5$, due to the [IIT-JEE 1999] (b) Carbene (d) Carbene (d) Carbene		(a) Tetrahedral (b) Planar (c) Triangular bipyramidal (d) None of these $\begin{array}{cccc} CH_3 & CH_3 \\ H_3C - C - Br + KOH(Aq.) \rightarrow H_3C - C - OH + KBr \\ CH_3 & CH_3 \\ above reaction is [RPMT 2003] (a) SN1 (b) SN2 (c) E_1 (d) Both (a) and (b) In electrophilic substitution reaction nitrobenzene is [Kerala (Med.) 2003] (a) Meta-directing$

CLICK HERE

》

-	 (d) Not reactive and does not undergo any substitution (e) Non-selective The meet common time of reaction in commutic common do is [Origon IFF reaction] 	 (b) Benzyl bromide hydrolysis (c) Reaction of <i>NaOH</i> with dinitrofluorobenzene (d) Sulphonation of benzene
7.	The most common type of reaction in aromatic compounds is [Orissa JEE 2003] (a) Elimination reaction 20.	Which is an electrophile [DCE 2000]
	(b) Addition reaction	(a) $AlCl_3$ (b) CN^-
	(c) Electrophilic substitution reaction	(c) NH_3 (d) CH_3OH
0	(d) Rearrangement reaction 21. The function of A/CL is Table Carffel matrices in	Strongest nucleophile is [BHU 2003]
8.	The function of <i>AlCl</i> ₃ in Friedel-Craft's reaction is [KCET 2003]	(a) RNH_2 (b) ROH
	(a) To absorb <i>HCl</i> (b) To absorb water	(c) $C_6 H_5 O^-$ (d) $C H_3 O^-$
	$ (c) \mbox{To produce nucleophile} \qquad (d) \mbox{To produce electrophile} \qquad \mbox{22.} $	The major product obtained when Br_2 / Fe is treated with
9.	Which of the following can't be used in Friedal Craft's reactions[AFMC 2004]	HNO
	(a) $FeCl_3$ (b) $FeBr_2$	HC CH is
	(c) $AlCl_3$ (d) $NaCl$	[IIT-JEE Screening 2004]
10.	The nitration of a compound is due to the [Pb. PMT 2004]	
	(a) NO_2 (b) NO_3	
	(c) NO (d) NO_2^+	(a) H,C $CH,$ (b) H,C $CH,$
11.	Dehydrohalogenation of an alkyl halide is a/an	
	[MH CET 2004]	$\gamma \sim \gamma$
	(a) Nucleophilic substitution reaction(b) Elimination reaction	
	(c) Both nucleophilic substitution and elimination reaction	
	(d) Rearrangement	(c) H,C $CH,$ (d) H,C $CH,$
12.	Addition of <i>HCl</i> to vinyl chloride gives 1, 1-dichloroethane because of [MP PET 20	
	 (a) Mesomeric effect of <i>Cl</i> (b) Inductive effect of <i>Cl</i> 	Which ^{Br} one of the following is least reactive in a nucleophilic substitution reaction [CBSE PMT 2004]
	(c) Restricted rotation around double bond	(a) CH_3CH_2Cl (b) $CH_2 = CHCH_2Cl$
	(d) None of these	(c) $(CH_3)_3 C - Cl$ (d) $CH_2 = CHCl$
13.	Formation of ethylene from acetylene is an example of 24.	Among the following the strongest nucleophile is
	(a) Elimination reaction (b) Substitution reaction (c) Addition reaction (d) Condensation reaction	[AllMS 2005]
14.	Conversion of CH_4 to CH_3Cl is an example of which of the	(a) C_2H_5SH (b) CH_3COO^-
	following reaction [Pb. CET 2001]	(c) CH_3NH_2 (d) $NCCH_2^-$
	(a) Electrophilic substitution 25.	The reaction [AIEEE 2005]
	(b) Free radical addition(c) Nucleophilic substitution	$\begin{array}{ccc} O & O \\ R - C \swarrow & + Nu \rightarrow R - C \swarrow & + X \text{, is fastest when } X \end{array}$
	(d) Free radical substitution	
15.	Following reaction, $(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$	X Nu
	is an example of	(a) Cl (b) NH_2
	[DCE 2002] (a) Elimination reaction (b) Free radical substitution	(c) OC_2H_5 (d) $OCOR$
_	(c) Nucleophilic substitution (d) Electrophilic substitution 26.	Elimination of bromine from 2-bromobutane results in the
16.	Which is an electrophile [DCE 2002] (a) BCI (b) $CH OH$	formation of [AIEEE 2004, 05] (a) Equimolar mixture of 1 and 2-butene
	(a) BCl_3 (b) CH_3OH	(b) Predominantly 2-butene
	(c) NH_3 (d) $AlCl_4$	(c) Predominantly 1-butene(d) Predominantly 2-butyne
17.	The electrophile in the nitration of benzene is [Orissa JEE 2004] 27.	Examine the following statements pertaining to an SN^{2} reaction
	(a) NO_2^+ (b) NO_2	 The rate of reaction is independent of the concentration of the nucleophile
	(c) NO^+ (d) NO_2^-	(2) The nucleophile attacks the C^- atom on the side of the
18.	The following compound will undergo electrophilic substitution	molecule opposite to the group being displaced
	more readily than benzene [UPSEAT 2004]	(3) The reaction proceeds with simultaneous bond formation and bond rupture/cleavage
	(a) Nitrobenzene(b) Benzoic acid(c) Benzaldehyde(d) Phenol	Amongst the following which of the above were true
19.	Which represents nucleophilic aromatic substitution reaction	[NCERT 1982] (a) 1, 2 (b) 1, 3
	[Orissa JEE 2004] (a) Practice of hereans with Cl is surflight 28 .	(c) 1, 2, 3 (d) 2, 3 What is the decreasing order of reactivity amongst the following
	(a) Reaction of benzene with Cl_2 in sunlight 28.	what is the decreasing order of reactivity amongst the following compounds towards aromatic electrophilic substitution [IIT-JEE 1995]

29.	1. Chlorobenzene 11. Anilinium chloride (a) $I > II > III > IV$ (c) $II > I > III > IV$ Which of the following applies in $CH_3CHBrCH_2CH_3$	(d) $III > I > II > IV$ n the reaction,
	(i) $CH_3CH = CHCH_3$ (major	or product)
	(ii) $CH_2 = CHCH_2CH_3$ (min	inor product)
		[Orissa JEE 2005]
	(a) Markovnikov's rule	(b) Saytzeff's rule
	(c) Kharasch effect	(d) Hofmann's rule 6
30.	Bromination of alkanes involves	[] & K 2005]
	(a) Carbanions	(b) Carbocations
	(c) Carbenes	(d) Free radicals
31.	e	t undergo nucleophilic substitution
	under ordinary conditions	[] & K 2005]
	(a) Chlorobenzene	(b) <i>tert</i> -butylchloride 7.
	(c) Isopropyl chloride	
32.	Which of the following alkyl grou	oups has the maximum + / effect[KCET 2002]
	(a) CH_3 –	(b) $(CH_3)_2 CH -$
	(c) $(CH_3)_3 C -$	(d) CH_3CH_2 –

Structural and stereo isomerism

1.	Only two isomers of monochloro product is possible of	
		[IIT-JEE 1986]

			. ,
(a)	<i>n-</i> butane	(b)	2,4-dimethyl pentane

(d) 1-methyl propane (c) Benzene 2.

Which is the example of branch isomerization

(c)
$$C_3 H_7 OH$$
 (d) $(C_2 H_5)_2 CHOH$

- Isomers have essentially identical 4. [CBSE PMT 1988; MP PMT 1983, 86]
 - (a) Structural formula

з.

5.

(c) Molecular formula

(d) Physical properties Which one of the following shows optical activity

[NCERT 1984, 90]

(b) Chemical properties

$$\begin{array}{cccccccccccc} H & H & H \\ | & H & -C - COOH & (b) & CH_3 - C - COOH \\ | & H & Cl & | \\ H & Cl & CH_3 & CH_3 \\ (c) & CH_3 - C - COOH & (d) & CH_3 - C - COOH \\ | & H & Cl & | \\ OH & Cl & Cl & | \\ \end{array}$$

In ethane and cyclohexane which one of the following pairs of 6. conformations are more stable

- (a) Eclipsed and chair conformations
- (b) Staggered and chair conformations
- (c) Staggered and boat conformations

8.

[NCERT 1976]

(b

- (d) Eclipsed and boat conformations
- Which of the following may exist in enantiomorphs

[CBSE PMT 1988]

$$CH_3$$

(a) $CH_3 - CH - COOH$
(b) $CH_2 = CHCH_2CH_2CH_3$
 NH_2
(c) $CH_3 - CH - CH_3$
 NH_2
(d) $CH_3 - CH_2 - CH - CH_3$

Which of the following compounds may not exist as enantiomers[CPMT 1987] (a) $CH_3CH(OH)CO_2H$ (b) $CH_3CH_2CH(CH_3)CH_2OH$

- (c) $C_6H_5CH_2CH_3$
- (d) $C_6H_5CHClCH_3$

Number of isomers of molecular formula $C_2H_2Br_2$ are 9.

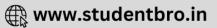
- [CPMT 1987] (a) 1 (b) 2 (d) 0 (c) 3 10. Lactic acid shows which type of isomerism [CPMT 1987; MP PMT 1987; BHU 2003] (a) Geometrical isomerism (b) Tautomerism (c) Optical isomerism (d) Metamerism 11. Which one of the following is an optically active compound [CBSE PMT 1988; DPMT 1983] (a) *n*-propanol (b) 2-chlorobutane (c) *n*-butanol (d) 4-hydroxyheptane Compounds with same molecular formula but different structural 12. formulae are called [BHU 1979; AFMC 1989] (a) lsomers (b) lsotopes (c) Isobars (d) Isoelectronic Which one of the following compounds shows optical isomerism[MP PET 1990] 13. (a) $CH_3CHCl - CH_2 - CH_3$ (b) $CH_3 - CH_2 - CHCl - CH_2 - CH_3$
 - (c) $ClCH_2 CH_2 CH_2 CH_3$
 - (d) $ClCH_2 CH_2 CH_3$
- Which one of the following objects is 'achiral' 14.
 - (a) Letter P (b) Letter F
 - (c) Ball (d) A pair of hand
- Total number of isomers of a disubstituted benzene compound is 15. (a) 1 (b) 2

(c) 3	(d) 4		()	$H \to C \to C \to H$	(1)	C_2H
Separating of <i>d</i> and <i>l</i> enantiom called	norphs from a racemic mixture is [CBSE PMT 1988; DPMT 1983;		(a)	$\frac{H}{H_3C} > C = C < \frac{H}{CH_3}$	(b)	H > C = C < H
(a) Resolution	(b) Dehydration			CU /H		CH_3
(c) Rotation	(d) Dehydrohalogenation		(c)	$C_{H}^{C_{H}} > C = C < H^{H}$	(d)	$H - C - C = C < H_H$
Number of optical isomers of lacti						$\overset{\mid}{H}\overset{\mid}{H}$
(a) 1 (c) 3	(b) 2 (d) 4	25.	Max	imum number of isomers	of alken	we $C_{_{A}}H_{_{8}}$ are
	(u) 4 ins asymmetric carbon atom[11T-JEE 19			[1177		; MP PMT 1985; MADT Bihar 1995;
				-	(h)	Kerala (Engg.) 2002]
Cl Br	H Cl		(a) (c)		(b) (d)	
(a) $H - C - C - H$	(b) $H - C - C - Cl$	26.	· · ·	4 ation of plane polarised lig	()	
						[CPMT 1985; DCE 2001]
H H	H H			Manometer Viscometer	()	Polarimeter Befractometer
H H	H H	77	()	Viscometer alkane forms isomers if the		Refractometer er of least carbon atom is[CPMT 1976
		27.	An a (a)		e numbe (b)	er of least carbon atom is[CPMT 1976 2
(c) $H - C - C - H$	(d) $H - C - C - CH_3$		(a) (c)		(d)	
		28.	. ,	ch is not found in alkenes	. ,	+ [AIIMS 1982; RPMT 1999]
H H	Br OH		(a)	Chain isomerism		Geometrical isomerism
<i>n</i> -butane and isobutane are examp	ples of		(c)	Metamerism	(d)	Position isomerism
(a) Chain isomers	(b) Geometrical isomers	29.	Ном	w many isomers of $C_5 H_{11}$	1 <i>OH</i> w	ill be primary alcohols
(c) Position isomers	(d) Tautomers					[CBSE PMT 1992]
Which of the following has chiral			(a)		(b)	
CH ₃	Stratta -		()	4	(d)	5
		30.	The	compound $C_4 H_{10} O$ can	n show	
(a) $CH_3 - CH - CH_2 COOH$	Н		(-)	· · ·	/L)	[IIT-JEE 1981; MP PET 2000]
(b) $CH_3 - CH = CH - CH_3$,			Metamerism Positional isomerism		Functional isomerism All types
		n	(c) The		()	All types for $C_{i}H_{ii}O_{i}$ are
<i>CH</i> 3		31.	LIK	number of possible alcoho	JIIC 15011	[DPMT 1984; MNR 1986]
(c) $CH_3 - CH - CH_2OH$			(a)	4	(b)	• •
(d) $CH_3 - CHOH - CH_2CH$	H_		(c)		(d)	
Which of the following pairs is an	5	32.	. ,	v many isomers are possibl	. ,	
(a) $CH_3 - CH_2 - CH_2 - CH_2$				-		[MNR 1992; UPSEAT 2001, 02]
(a) Chi 3 Chi 2 Chi 2	I		(a)	3	(b)	
	CH ₃		(c)	5	(d)	6
(b) $CH_3 - CH_2 - CH = CH_2$	and $CH_2 - CH = CH - CH_3$	33.		ch of the following can exl	hibit <i>cis</i> -	
			· .		2)	[CBSE PMT 1989]
(c) $CH_3 - CH_2OH$ and $CH_3 - CH_2OH$	$l_3 - O - CH_3$			$HC \equiv CH$		C CH = CHC
CH ₃			(c)	-		$ClCH_2 - CH_2Cl$
(d) $CH_3 - C - CH_3$ and CH_3	$-CH_2 - CH_2 - CH_2 - CH_3$	34.		number of geometrical iso cture $CH_3 - CH = CH$		case of a compound with the $= CH - C_2H_5$ is
CH ₃				-		[NCERT 1980]
Geometrical isomerism is shown b	L.,		(a)	4	(b)	3
	by 2 1983; СРМТ 1990, 94; СВЅЕ РМТ 1992;		(c)	2	(d)	5
	MP PET 1997; AMU (Engg.) 1999]	35.		property by virtue of w rised light is known as	hich a c	compound can turn the plane [BHU 1979]
(a) 2-butene(c) 2-butanol	(b) 2-butyne (d) Butanal		(a)	Photolysis	(b)	Phosphorescence
(c) 2-butanol An organic compound exhibits opt	()		(c)	Optical activity	()	Polarization
	[CPMT 1971, 78, 81; MP PET 1999]	36.	Mes	o-tartaric acid is optically	inactive	due to the presence of [AIIMS 1982; MP PMT 1987]
(a) Four groups linked to carbon(b) Three groups linked to carbo			(a)	Molecular symmetry		-
(c) Two groups linked to carbon			(b)	Molecular asymmetry		
(d) All the groups linked to carb			(c)	External compensation		
Which one of the following exhibit			(d)	Two asymmetric C-atoms		
	ERT 1979; DPMT 1984; CBSE PMT 1990]	37.	Whi	ch of the following compo	unds ext	hibits optical isomerism[BHU 1983; A

	MP PMT 1999, 2000]		(b)	Butanone and butanal			
	(a) CH_3CH_2COOH (b) $CH_3CHOHCOOH$		(c)	Ethoxy propane and propoxy	etha	ane	
	(c) $CH_3CH_2CH_2OH$ (d) $CH_3CHOHCH_3$	50.		Methoxy methane and ethar tional isomerism is exhil		by the followin	a nain af
38.	The maximum number of stereoisomers possible for 2-hydroxy-2-	50.		pounds	nicu	by the following	
	methyl butanoic acid is [Roorkee 1992]		(a)	Acetone, propionaldehyde			
	(a) 1 (b) 2		(b)	Diethyl ether, methyl propyl	ethe	r	
	(c) 3 (d) 4		(c)	Butane, isobutane			
39.	Which one of the following pairs represents the stereoisomerism[AllMS 1992	-	. ,	1-butene, 2-butene			
	 (a) Geometrical isomerism, position isomerism (b) Geometrical isomerism, conformational isomerism 	51.	The	total number of possible isor	neric		
	 (c) Optical isomerism, geometrical isomerism 		(a)	2	(b)	-	AP PET 1997]
	(d) Optical isomerism, metamerism		(c)		(d)	6	
40.	Diethyl ether is not associated with which one of these isomers[AFMC 1993]	52.		cally active isomers but not 1	nirro	r images are called	
	(a) Butanoic acid (b) Methyl propionate					[٨	AP PET 1999]
	(c) Steroisomerism (d) None of these			Enantiomers		Mesomers	
41.	Diethyl ether and methyl <i>n</i> -propyl ether are		(c)	Tautomers	(d)	Diastereoisomers	
		53.		H_9N has how many isom			
	(a) Position isomers (b) Functional isomers (c) Metamers (d) Chain isomers		ring	=		997, 99; JIPMER 200	2; DCE 2003]
42.	<i>n</i> -propyl alcohol and isopropyl alcohol are examples of			4	(b) (d)		
•	[MP PMT 1994]	- 4	• •	6 • • • • • • • • • • • • • • • • • • •	. ,	-	
	(a) Position isomerism (b) Chain isomerism	54.	The	total number of isomers forr	ned b	5 10	
	(c) Tautomerism (d) Geometrical isomerism		(a)	2	(b)		ar MEE 1996]
43.	It is possible to distinguish between optical isomers by			4	(d)		
	[Manipal MEE 1995; AFMC 1995] (a) Infrared spectroscopy			None of these	(-)	0	
		55.	Whi	ch of the following contains a	symr	netric centre	
	(c) Melting point determination						[CPMT 1996]
	(d) Polarimetry			2-butene	• •	2, 2-dimethylprop	ane
44.	The isomerism exhibited by alkyl cyanide and alkyl isocyanide is[AFMC 1995,		. ,	2-hexyne	• • •	Lactic acid	
	(a) Functional (b) Positional	56.		ch of the following cannot be A shoe	-	n to exemplify chira A screw	al structure[JIPMER 199
	(c) Tautomerism (d) Metamerism		()	A screw driver	• •	All of these	
45.	The following compound can exhibits	57.	· · ·	ch of the following is expecte	• •		
	$CH_{2} \searrow H H$						IPMER 1997]
	$\begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \xrightarrow{C = C} C \xrightarrow{H} H \\ CH_{3} \\ CH_$		(a)	$(CH_3)_4 C$	(b)	$C_2H_5CH(CH_3$	$C_{3}H_{7}$
	CH ₃ COOH		(c)	$(C_2H_5)_2CHCH_3$	(d)	$CH_3CH = CH_3$	CH ₃
	(a) Tautomerism	58.	Whi	ch compound does not show	geon	netrical isomerism	
	(b) Optical isomerism						[RPMT 1997]
	(c) Geometrical isomerism(d) Geometrical and optical isomerisms		(a)	2-butene	• •	2-pentene	
46.	Name the compound that is not isomer with diethyl ether		(c)	2,3-dibromo-2-butene	• •	2-methyl propene	
	[IIT-JEE 1981; CPMT 1989; MADT Bihar 1995]	59.		isomers which can be conve the molecules around single bo			by rotation
	(a) <i>n</i> -propylmethyl ether			0			[A11MS 1997]
	(b) Butane-1-ol		(a)	Geometrical isomers	(b)	Conformers	
	(c) 2-methylpropane-2-ol		(c)	Enantiomers	(d)	Diastereomers	
477		60.	The	number of enant	iomer		compound
47.	Which statement is true for cyclohexane [MP PET 1996] (a) It has two possible isomers [MP PET 1996]			₃ CHBrCHBrCOOH is			[AIIMS 1997]
	(b) It has three conformations		(a)		(b)		
	(c) Boat conformation is most stable	<i>c</i> .	• • •	3	(d)	4	
	(d) Chair and boat conformations differ in energy by 44 kJ/mol	61.		$H_5 C \equiv N$ and $C_6 H_5 N \equiv$			f isomerism[CPMT 199
48.	Two compounds have the structural formulae		. ,	Position Dextro isomerism	• •	Functional Metamerism	
	$CH_3 - O - CH_2CH_3$ and $CH_3 - CH_2 - CH_2OH$. The	62.	· · ·	ch of the following compound	· · ·		
	above is an example of			in or the ronowing compound		CBSE PMT 1998;	DPMT 2002]
	(a) Metamerism (b) Functional isomerism		(a)	DCH ₂ CH ₂ CH ₂ CH ₂ Cl	(b)	CH ₃ CH ₂ CHD	-
40	(c) Positional isomerism (d) Chain isomerism Which of the following pairs are not isomeric compounds		(c)	CH ₃ CHDCH ₂ CH ₂ Cl		CH ₂ CHClCH ₂	
49.		63.		nd <i>trans</i> 2-butene are	(-)		DPMT 2002]
	() · · · · · · · · · · · · · · · · · · ·	-0.	<i>c13</i> a			Lona 1990,	5 2002j

	(a) Conformational isomers	(b)	Optical isomers	
	(c) Position isomers	(d)	•	79.
64.	Which one of the following is the	chira	al molecule	
			[BHU 1998; 2005]	
	(a) CH_3Cl	(b)	CH_2Cl_2	80.
	(c) $CHBr_3$	(d)	CHClBrI	
65.	Cyanide and isocyanide are isome	rs of	type [AFMC 1997]	
	(a) Positional	(b)	Functional	
	(c) Tautomer	(d)	Structural	81.
66.	Glucose and fructose are	<i>a</i> \	[AMU (Engg.) 1999]	
	(a) Optical isomers	(b)		
67.	(c) Position isomers Which of the following compou	• •	Chain isomers	
07.	compound	mus	[UPSEAT 1999]	
	(a) 1-butanol	(b)	2-butanol	
	(c) 3-butanol	(d)	4-heptanol	
68.	<i>d</i> -tartaric acid and <i>L</i> tartaric acid a		[MH CET 1999]	82.
	(a) Enantiomers	(b)	Tautomers	
69.	(c) Diastereoisomers Minimum resistance in bond r	(d) rotati		
09.	compound	otati	[RPMT 1999]	83.
	(a) Hexachloroethane	(b)	Ethylene	
	(c) Acetylene	(d)	Ethane	
70.	Which pair show cis-trans isomer		[RPET 1999]	
	(a) Maleic-fumaric acid	• •	Lactic-tartaric acid	
71.	(c) Malonic-succinic acid1, 2-Dichloroethene shows	(d)	Crotonic-acrylic acid [RPET 1999]	
71.	(a) Geometrical isomerism	(b)		
	(c) Ring-chain isomerism	(d)	Resonance	
72.	Which compound is optically activ	/e	[DCE 1999]	
	(a) 4-chloro, 1 hydroxy butane			
	(b) 3 [°] -butyl alcohol			
	(c) Secondary butyl amine			
	(d) <i>n</i> -butyl alcohol			
73.	Choose the pair of chain isomer		[RPMT 2000]	
		011		
	(a) CH_3CHBr_2 and CH_2Br_2	rCH	$_{2}Br$	
	(b) 1-propanol and 2-propanol	rCH	₂ Br	
	(b) 1-propanol and 2-propanol(c) Neo-pentane and isopentane		-	84.
74.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-n-p 	огору	l ether	84.
74.	(b) 1-propanol and 2-propanol(c) Neo-pentane and isopentane	огору	l ether	84.
74.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom 	огору	- l ether esence of	84.
74.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry 	огору	- l ether esence of	84.
74.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry 	огору	- l ether esence of	-
	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry 	oropy ne pr	l ether esence of [RPMT 2000]	85.
74. 75.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry Least hindered rotation about carbon 	oropy 1e pr bon-c	t ether esence of [RPMT 2000] carbon bond is observed in [RPMT 2	85.
	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry Least hindered rotation about carbon (a) Ethane 	oropy ne pr	l ether esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene	85.
	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry Least hindered rotation about carbon (a) Ethane 	bon-d (b) (d)	l ether esence of [RPMT 2000] :arbon bond is observed in [RPMT 2 Ethylene	85.
75.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry Least hindered rotation about carl (a) Ethane (c) Ethyne 	bon-c (b) (d) er	- esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000]	85 . 2000]
75.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry (d) Plane of symmetry Least hindered rotation about carl (a) Ethane (c) Ethyne Which pair represents chain isometication (a) CH₃CHCl₂ and ClCH₂ 	bon-c (b) (d) CH ₂	l ether esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000] <i>Cl</i>	85. 2000] 86.
75.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry Least hindered rotation about carl (a) Ethane (c) Ethyne Which pair represents chain isometical 	bon-c (b) (d) cH ₂ yl ak	esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000] <i>Cl</i> cohol	85 . 2000]
75.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to the symmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry (d) Plane of symmetry Least hindered rotation about carbon atom (a) Ethane (c) Ethyne Which pair represents chain isometication (a) CH₃CHCl₂ and ClCH₂C (b) <i>n</i>-propyl alcohol and isoprop 	propy ne pr (b) (d) er <i>CH</i> ₂ yl ak	esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000] <i>Cl</i> cohol	85. 2000] 86.
75.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to the (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry Least hindered rotation about carbon atom (a) Ethane (c) Ethyne Which pair represents chain isomove (a) <i>CH</i>₃<i>CHCl</i>₂ and <i>ClCH</i>₂<i>C</i> (b) <i>n</i>-propyl alcohol and isoprop (c) 2-methy/1 propanol and 2-Mether (d) 2-methyl butane and neopen Which of the following compared to the symmetry 	boon-or (b) (d) er CH_2 yl ak hyl-2 tane	esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000] <i>Cl</i> cohol propanol ds will exhibit geometrical	85. 2000] 86.
75. 76.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to the symmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry Least hindered rotation about carbon atom (a) Ethane (c) Ethyne Which pair represents chain isometrical control of the symmetrical control of the symmetrical control of the symmetry of the sy	bon- c (b) (d) er CH_2 yl ak tane poun	esence of [RPMT 2000] arbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000] <i>Cl</i> cohol propanol ds will exhibit geometrical [IIT-JEE Screening 2000]	85. 2000] 86.
75. 76.	(b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl- <i>n</i> -p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry Least hindered rotation about carl (a) Ethane (c) Ethyne Which pair represents chain isome (a) CH_3CHCl_2 and $ClCH_2d$ (b) <i>n</i> -propyl alcohol and isoprop (c) 2-methy/1 propanol and 2-Metl (d) 2-methyl butane and neopen Which of the following comp isomerism (a) 1-phenyl-2-butene	bon-o (b) (d) er CH_2 yl akc hyl-2 tane poun (b)	 d ether esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000] Cl cohol propanol ds will exhibit geometrical [IIT-JEE Screening 2000] 3-phenyl-1-butene 	85. 2000] 86.
75. 76. 77.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry (d) Plane of symmetry Least hindered rotation about carl (a) Ethane (c) Ethyne Which pair represents chain isomorian (a) <i>CH</i>₃<i>CHCl</i>₂ and <i>ClCH</i>₂<i>C</i> (b) <i>n</i>-propyl alcohol and isoprop (c) 2-methy/1 propanol and 2-Meth (d) 2-methyl butane and neopen Which of the following compisomerism (a) 1-phenyl-2-butene (c) 2-phenyl-1-butene 	bon-c (b) (d) er <i>CH</i> ₂ yl ak hyl-2 tane poun (b) (d)	l ether esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000] <i>Cl</i> cohol propanol ds will exhibit geometrical [IIT-JEE Screening 2000] 3-phenyl-1-butene 1, 1-Diphenyl-1-propene	85. 2000] 86.
75. 76.	(b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl- <i>n</i> -p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry Least hindered rotation about carl (a) Ethane (c) Ethyne Which pair represents chain isome (a) CH_3CHCl_2 and $ClCH_2d$ (b) <i>n</i> -propyl alcohol and isoprop (c) 2-methy/1 propanol and 2-Metl (d) 2-methyl butane and neopen Which of the following comp isomerism (a) 1-phenyl-2-butene (c) 2-phenyl-1-butene On bromination, propionic	bon- (b) (b) (c)	 d ether esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000] Cl cohol propanol ds will exhibit geometrical [IIT-JEE Screening 2000] 3-phenyl-1-butene 1, 1-Diphenyl-1-propene yields two isomeric 2- 	85. 2000] 86. 87.
75. 76. 77.	 (b) 1-propanol and 2-propanol (c) Neo-pentane and isopentane (d) Diethyl ether and methyl-<i>n</i>-p Optical isomerism arises due to th (a) An asymmetric carbon atom (b) Centre of symmetry (c) Axis of symmetry (d) Plane of symmetry (d) Plane of symmetry Least hindered rotation about carl (a) Ethane (c) Ethyne Which pair represents chain isomorian (a) <i>CH</i>₃<i>CHCl</i>₂ and <i>ClCH</i>₂<i>C</i> (b) <i>n</i>-propyl alcohol and isoprop (c) 2-methy/1 propanol and 2-Meth (d) 2-methyl butane and neopen Which of the following compisomerism (a) 1-phenyl-2-butene (c) 2-phenyl-1-butene 	bon- (b) (b) (c)	l ether esence of [RPMT 2000] carbon bond is observed in [RPMT 2 Ethylene Hexachloroethane [RPMT 2000] <i>Cl</i> cohol propanol ds will exhibit geometrical [IIT-JEE Screening 2000] 3-phenyl-1-butene 1, 1-Diphenyl-1-propene yields two isomeric 2- mportant example of [BHU 2000]	85. 2000] 86. 87.

	(c) Cis-trans isomers (d) Position isomers
79.	Geometrical isomerism is not possible in [CPMT 2000]
	(a) Propene (b) 3-hexane
	(c) Butenedioic acid (d) Cyclic compound
80.	Only two isomeric monochloro derivatives are possible for
	[Pb. PMT 2000]
	(a) 2-methyl propane (b) <i>n</i> -pentane
	(c) Benzene (d) 2, 4-dimethyl pentane
81.	Lactic acid in which a methyl group, a hydroxyl group, a carboxylic acid group and a hydrogen atom are attached to a central carbon atom, shown optical isomerism due to the molecular geometry at the [Pb. PMT 2000]
	(a) Central carbon atom
	(b) Carbon atom of the methyl group
	(c) Carbon atom of the carboxylic acid group
	(d) Oxygen of the hydroxyl groups
82.	The number of possible alkynes with molecular formula $C_5 H_8$ is [MP PMT 2
	(a) 2 (b) 3
	(c) 4 (d) 5
83.	Which of the following will not lose asymmetry on reduction with $LiAlH_4$ [Roorkee 2000]
	(a) $HOH_2C \xrightarrow{CHO} CH_2CH_3$ $CH = CH_2$
	(b) $H_2C = HCO \xrightarrow{CH_3} CHO \\ CH_2CH_3$
	(c) $HOH_2C + COOH$ C = CH
	(d) $H_3C \xrightarrow{CHO} C \equiv N$ CH_2NH_2
84.	Reason for geometrical isomerism by 2-butene is
	[CBSE PMT 2000]
	(a) Chiral carbon
	(b) Free rotation about single bond
	(c) Free rotation about double bond
0 -	(d) Restricted rotation about double bond


- Stereoisomers which are not the mirror images of one another are called [RPMT 2000]
 - (a) Enantiomers (b) Mesomers
 - (c) Tautomers (d) Diasteroisomers
- 86. The isomerism shown by *n*-butyl alcohol and isobutyl alcohol is [RPMT 2000]
 - (a) Metamerism (b) Chain
 - (d) Stereo (c) Position
- Which is optically active 87.
 - (a) CH_2Cl_2

- (b) CHCl₃
- (c) Meso form of tartaric acid
- (d) Glyceraldehyde
- 88. Which of the following will show geometrical isomerism
 - [CPMT 2001; BHU 2005]

$$CH_{3}CH = CHCH_{3}$$
 (b) $(CH_{3})_{2}C = C(CH_{3})_{2}$

Get More Learning Materials Here : 📕

(a)


[MH CET 2001]

	(c) $(CH_3)_2 C = C(CH_3)_2$ (d) $CH_3 - CH = C(CH_3)_2$
89.	What is the maximum number of open chain structures possible for $C_4 H_8$ [MP PET 2001]
	(a) 2 (b) 3
	(c) 4 (d) 1
90.	Glucose has optical isomers [DCE 2001]
	(a) 8 (b) 12
01	(c) 16 (d) Cannot be predicted An organic compound
91.	${}^{1}CH_{3} - {}^{2}CH_{2} - {}^{3}CH_{2} - {}^{4}CH_{2} - {}^{5}CH_{2} - {}^{6}CH_{2} - {}^{7}CH_{3}$
	$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$ To make it chiral compound the attack should be on which carbon
	atom [DCE 2001]
	(a) 1 (b) 3
92.	 (c) 4 (d) 7 Which of the following statements is not true about enantiomers[DCE 2001] (a) They have same physical properties (b) They have different biological properties
	(c) They have same chemical properties towards chiral compounds
	(d) None of these
93.	Meso-tartaric acid is [BHU 2001]
	 (a) Optically inactive (b) Optically active because of molecular symmetry (c) Optically inactive due to external compensation (d) Optically active because of asymmetric carbon atom
94.	The number of possible isomers of the compound with molecular
	formula $C_7 H_8 O$ is [BHU 2001]
	(a) 3 (b) 5
	(c) 7 (d) 9
95.	The number of isomers for the compound with molecular formula $C_2BrClFhs$ [IIT-JEE (Screening) 2001]
	(a) 3 (b) 4
06	(c) 5 (d) 6 Hydrogenation of the adjoining compound in the presence of
96.	poisoned palladium catalyst gives
	[IIT-JEE (Screening) 2001]
	Me H Me
	Me H H
	(a) An optically active compound
	(b) An optically inactive compound
	(c) A racemic mixture
	(d) A diastereomeric mixture
97.	The number of possible structural isomers for a compound with the molecular formula $\ C_7 H_{16}$ is [DCE 2001]
	(a) 8 (b) 9
	(c) 10 (d) 12
98.	Which of the following molecule contains asymmetric carbon atom[JIPMER
	(a) $CH_3CHClCOOH$ (b) CH_3CH_2COOH
	(c) $ClCH_2CH_2COOH$ (d) $Cl_2CHCOOH$
99.	A similarity between optical and geometrical isomerism is that[AIEEE 2002]
	(a) Each forms equal number of isomers for a given compound
	(b) If in a compound one is present then so is the other
	(c) Both are included in stereoisomerism
	(d) They have no similarity

100.	If the light waves pass through a	nico	l prism then all the oscillations
100.	occur only in one plane, such bea	am of	light is called as[Kerala (Med.) 2002]
	(a) Non-polarised light	(b)	Plane polarised light
	(c) Polarised light	(d)	Optical light
101.	Racemic mixture is formed by mi	xing	two [AIEEE 2002]
	(a) Isomeric compounds	(b)	Chiral compounds
	(c) Meso compounds	(d)	Optical isomers
102.	Which of the following does not	show	geometrical isomerism [AIEEE 2002]
	(a) 1, 2 dichloro-1-pentene		
	(b) 1, 3-dichloro-2-pentene		
	(c) 1, 1-dichloro-1-pentene		
	(d) 1, 4-dichloro-2-pentene		
	•		Ц
100	H_3C C = C H and H	30	
103. 001]		/	
1.00	Н Н	H	CH ₃
	exhibit which isomerism		[MP PET 2002]
	(a) Position isomerism	(b)	Geometrical isomerism
	(c) Optical isomerism	(d)	Functional isomerism
104.	Which compound is chiral	× .	[RPMT 2002]
	(a) butane		-
	(b) 1-chloro-2-methyl butane		
	(c) 2-methyl butane		
	(d) 2-methyl propane		
105.	Methyl acetate and propionic acid		[RPMT 2002]
	(a) Functional isomer	(b)	
-	(c) Stereoisomer	(d)	
106.	Which compound shows <i>cis-trans</i>		• •
	(a) 1-butene	(b)	• •
	(c) 2-butene	(d)	
107.	Isomers of propionic acid are	_	[MP PMT 2002]
	(a) $HCOOC_2H_5$ and CH_3C_2	2001	CH ₃
	(b) $HCOOC_2H_5$ and C_3H_7	,000	OCH ₃
	(c) CH_3COOCH_3 and C_3H		
	(d) C_3H_7OH and CH_3COC	,	1
108			
108.	The functional isomer of ethyl alc		• •
	(a) CH_3OCH_3	(b)	$CH_{3}COCH_{3}$
	(c) CH_3COOH	(d)	CH ₃ CH ₂ CHO
109.	Disymmetric object is one which		[Kerala (Engg.) 2002]
• • •	(a) Superimposable on its mirro		
	(b) Non-superimposible on its n		-
	(c) Optically inactive		
	(d) Achiral		
110.	Geometrical isomers differ in		[CBSE PMT 2002]
	(a) Position of atoms		
1	(b) Length of carbon		
ER 2002]	(c) Spatial arrangement of atom		
	(d) Position of functional group		
111.	Which of the following hydride is	s capa	able of showing conformations[JIPMER 2
-	(a) $NH_2 - NH_2$		B_2H_6
02]			
	(c) CH_4	()	None of these
112.	Which of the following is an chira	al cor	npound
			[AllMS 2002]
	(a) Hexane	(b)	Methane
	(c) <i>n</i> -butane	(d)	2.3.4-trimethyl bexane

(c) *n*-butane (d) 2,3,4-trimethyl hexane

Get More Learning Materials Here : 📕

113.	What is the possible number of optical isomers for a compound	
	containing 2-dissimilar asymmetric carbon atom [CPMT 1999; UPSEAT 1999, 2000, 02]	
	(a) 2 (b) 4	
	(c) 6 (d) 8	
114.	Which of the following compounds is optically active	
-	[Pb. PMT 2001; AMU 2002; Kerala (Med.) 2003]	
	(a) $(CH_3)_2 CHCH_2 OH$ (b) $CH_3 CH_2 OH$	122.
	(c) CCl_2F_2 (d) $CH_3CHOHC_2H_5$	
115.	Optically active compound is [UPSEAT 2002]	
	(a) 3-chloropentane (b) 2-chlorobutane	
	(c) 2-chloropropane (d) None of these	
116.	If a carbon atom is attached to $-H, -OH, -COOH$ and	
	$-OCOC_2H_5$ number of chiral C – atoms in compound is	
	[RPMT 2003]	123.
	(a) 1 (b) 2	123.
	(c) 3 (d) 4	
117.	Isomerism due to rotation round single bond of carbon-carbon is [UPSE	AT 2003]
	(a) Conformation (b) Enantiomerism	124.
	(c) Diasterio isomerism (d) Position isomerism	
118.	Which of the following pairs of compounds are enantiomers	
	[CBSE PMT 2003]	105
		125.
	(a) $HO \longrightarrow H$ $HO \longrightarrow H$	
	$H \longrightarrow OH H HO \longrightarrow H$	
	<i>CH</i> ₃ <i>CH</i> ₃	126.
	CH ₃ CH ₃	
	$H \longrightarrow OH HO \longrightarrow H$	
	(b) $H \longrightarrow OH \\ HO \longrightarrow H$ and $HO \longrightarrow H$ $HO \longrightarrow OH$	127.
	\dot{CH}_3 \dot{CH}_3	
	CH_3 CH_3	
	$H \longrightarrow OH HO \longrightarrow H$	
	(c) $HO \longrightarrow H$ and $HO \longrightarrow H$	
	CH_3 CH_3	
	СН СН	
	(d) $H \xrightarrow{CH_3} OH \\ HO \xrightarrow{H} H$ and $H \xrightarrow{CH_3} OH \\ HO \xrightarrow{H} OH \\ CH_3 OH$	
	$\begin{array}{c c} H & OH \\ \hline (d) \\ HO \\ HO \\ H \\ \end{array}$	
	$HO \longrightarrow H$ $H \longrightarrow OH$	128.
	CH_3 CH_3	
	/ <i>CH</i> ₃	
119.	$H_{3}C \xrightarrow{H^{+}} OH \xrightarrow{H^{+}} [F] \xrightarrow{Br_{2}.CCl_{4}} \underbrace{C_{4}H_{8}Br_{2}}_{5 \text{ such products}}$	129.
	H_3C OH $^{-H_2O}$ 5 such products	-
	are possible	
	How many structures of F is possible	
	[IIT-JEE (Screening) 2003]	
	(a) 2 (b) 5	130.

			122.	Isomerism shown by
(c) CCl_2F_2	(d)	$CH_3CHOHC_2H_5$		$CH_3 - (CH_2)_3 - O - CH_3$
Optically active compound is		[UPSEAT 2002]		$CH_3 - CH_2 - O - CH_2 - CH_2 - CH_3$
(a) 3-chloropentane	(b)	2-chlorobutane		$CH_3 - CH - O - CH_2 - CH_3$ is [RPMT 2003]
(c) 2-chloropropane	(d)	None of these		
If a carbon atom is attacl	hed to	o <i>-H,-OH,-COOH</i> and		CH ₃
$-OCOC_2H_5$ number of chiral				(a) Position isomerism (b) Chain isomerism
	c			(c) Metamerism (d) Optical isomerism
	(1)	[RPMT 2003]	123.	A compound whose molecules are superimposable on their mirror
(a) 1	(b)			images even through they contain an asymmetric carbon atom is called [Kerala (Med.) 2003]
(c) 3	(d)		_	(a) A meso compound (b) An erythro isomer
lsomerism due to rotation roun	d singl	e bond of carbon-carbon is [UPSEA	T 2003]	(c) A threo isomer (d) a glycol
(a) Conformation	(b)	Enantiomerism	124.	Of the following, the compound possessing optical isomerism [Kerala (Med.)
(c) Diasterio isomerism	(d)	Position isomerism		(a) CH_3CH_2OH (b) $CH_3CHClBr$
Which of the following pairs of	compo	ounds are enantiomers		(c) CCl_2BrF (d) CCl_2F_2
		[CBSE PMT 2003]	125.	Which of the following statement is wrong [EAMCET 2003]
CH_3		CH ₃	0.	(a) Diethyl ketone and methyl propyl ketone are position isomers
(a) $HO \longrightarrow H$ $H \longrightarrow OH$ and $H \longrightarrow OH$	HO ·	<i>H</i>		(b) 2-chloro pentane and 1-chloro pentane are position isomers
(a) $H \longrightarrow OH^{and}$	HO	<i>H</i>		(c) <i>n</i> -butane and 2-methyl propane are chain isomers
CH ₂	110			(d) Acetone and propinaldehyde are functional isomers
CH_3		СП 3	126.	Dimethyl ether and ethyl alcohol are [MH CET 2004; Pb. CET 2002]
CH ₃		CH ₃		(a) Metamers (b) Homologues
(b) $H \longrightarrow OH \\ HO \longrightarrow H$ and	HO -	<i>H</i>		(c) Functional isomers (d) Position isomers
(b) $HO \longrightarrow H$ and	H^{-}	——————————————————————————————————————	127.	The correct statement about the compounds A and B is
CH 2		CH ₂		[DCE 2002; UPSEAT 2004; IIT-JEE 1997; DPMT 2005]
5		5		COOCH ₃ COOH
(c) $H \xrightarrow{CH_3} OH_{HO} \xrightarrow{H} H$ and		CH ₃		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$H \longrightarrow OH$ (c) $H \longrightarrow OH$ and	HO	H		Н — ОН Н — ОН
$HO \longrightarrow H$	HO -	———— <i>H</i>		COOH COOCH ₃
CH ₃		CH ₃		(A) (B)
CIL				(a) A and B are identical
		H_3		(b) A and B are diastereomers
(d) $H \longrightarrow OH \\ HO \longrightarrow H$ and H	1 —	OH		(c) A and B are enantiomers
HO - H	I —	OH	128.	(d) None of these Ethyl acetoacetate shows, which type of isomerism
CH ₃	C	H ₃		[Pb. CET 2003]
$_{\prime}CH_{3}$				(a) Chain (b) Optical
$H \subset OH \xrightarrow{-H_2O} [F]$	$Br_2.C$	$C_4 \rightarrow C_4 H_0 Br_0$	100	(c) Metamerism (d) Tautomerism Which of the following will have a mesoisomer also
H_3C OH $-H_2O$			129.	[AIEEE 2004]
$\Pi_3 C = O \Pi$		5 such products are possible		(a) 2, 3-Dichloropentane
How many structures of F is po	ssible			(b) 2, 3-Dichlorobutane
, ,		[IIT-JEE (Screening) 2003]		(c) 2-Chlorobutane
(-) 2	(1)		130.	(d) 2-Hydroxypropanoic acid For which of the following parameters the structural isomers
(a) 2	(b)	5		C_2H_5OH and CH_3OCH_3 would be expected to have the same
(c) 6	(d)	3		values ? (Assume ideal behaviour) [AIEEE 2004]
An enantiomerically pure acid i	s treat	ed with racemic mixture of an		(a) Boiling points
alcohol having one chiral carbor	n. The	ester formed will be[11T-JEE (Screeni	ng) 2003	
(a) Optically active mixture	(b)	Pure enantiomer		(c) Heat of vaporization
(c) Meso compound	(d)	Racemic mixture	101	(d) Gaseous densities at the same temperature and pressure
Which one of the following will	not sh	ow geometrical isomerism [MP PM'	131. T 2003]	The geometrical isomerism is shown by [AIIMS 2004]
5		-	-1	CH, CH,

🕀 www.studentbro.in

(a) $\begin{array}{cccc} H_{3}C & Cl & H_{3}C & Cl \\ H' & Br & H_{3}C' & Cl \\ H' & Br & H_{3}C' & Br \end{array}$ (b) $\begin{array}{cccc} H_{3}C' & Cl \\ H_{3}C' & Br \\ H_{3}C' & H_{3}C' \\$

Isomerism shown by

(c) Meso compound (d) Racemic mixture 131. Which one of the following will not show geometrical isomerism [MP PMT 2003] 121.

CLICK HERE

»

120.

Get More Learning Materials Here : 📕

(c) Optical isomers (d) Geometrical mesomers (b) $CH_3CH_2CH = CH_2$ and $CH_3 - CH = CH - CH_3$ show (a) 143. (a) Chain isomerism (b) Position isomerism (c) Functional isomerism (d) Metamerism CH Cl / CH Cl The number of possible isomers of butene are (d) 144 (c) [Kerala (Engg.) 2002] (b) 2 3 Which of the following compounds will exhibit *cis-trans* isomerism[Kerala PMT 2004] 132. (d) (c) 4 5 (b) 2-butyne (a) 2-butene (e) 6 (c) 2-butanol (d) Butanone Which of the following show geometrical isomerism 145. (e) Butanol [BCECE 2005] Which of the following compounds exhibit stereoisomerism 133. (a) C_2H_5Br (b) $(CH_2)(COOH)_2$ [MP PMT 2004] (c) $(CH)_2(COOH)_2$ (d) $C_2 H_6$ (a) 2-methyl-butane 1 (b) 3-methyl-butanoic acid (c) 3-methyl-butyne 1 (d) 2-methyl butanoic acid 146. Among the following the most stable compound is The chirality of the compound [CBSE PMT 2005] [AIIMS 2005] 134. (a) cis-1,2-cyclohexanediol(b) trans-1, 2-cyclohexanediolC ---- H (c) cis-1,3-cyclohexanediol H_3C trans-1,3-cyclohexanediol (d) (a) *R* (b) *S* Chirality of carbon compound is because of its 147. (c) Z (d) *E* [Kerala (Med.) 2002] Which of the following is most likely to show optical isomerism[UPSEAT 2004] 135 (a) Tetrahedral nature of carbon Η (b) Monovalent nature of carbon (a) $HC \equiv C - \stackrel{|}{C} - C \equiv CH$ (b) $HC \equiv C - \stackrel{|}{C} - CH_3$ Cl (c) $HC \equiv C - \stackrel{|}{C} - H$ (d) $HC \equiv C - \stackrel{|}{C} = CH_2$ Divalent nature of carbon (c) (d) Trivalent nature of carbon 148. Which kind of isomerism is possible for 1-chloro-2-nitroethene[] & K 2005] Functional group isomerism (a) Position isomerism (b) E/Z isomerism (c) Optical isomerism (d) Which will give chiral molecule [DPMT 2005] Nitroethane can exhibit one of the following kind of isomerism[DCE 2004] 149-136. $CH_3COCl \xrightarrow{LiAlH_4} \rightarrow$ (a) Metamerism (b) Optical activity (d) Position isomerism (c) Tautomerism $C_2H_5CHO \xrightarrow{CH_3MgBr}_{H^+/H_2O}$ 137. CH₃CH(OH).COOH shows [BVP 2004] (b) (a) Geometrical isomerism (b) Optical isomerism (c) $(CH_3)_2 CHC_2 H_5 \xrightarrow{Cu}$ (c) Both (d) None 138. Which will have enantiomer [BVP 2004] (d) $CH_3 C = C CH_3 \xrightarrow{Cl_2} CH_3$ (a) $CH_3CH_2CH_-CH_3$ (b) $CH_2CH_2CH_2CH_2CH_2Cl$ (c) $CH_3CH_2CH_2CHCl_2$ (d) None Which of the following will be chiral 150. The total number of acylic isomers including the stereoisomers with [] & K 2005] 139. the molecular formula $C_4 H_7 Cl$ (a) CH_3CHCl_2 (b) $CH_3CHBrCl$ [Pb. CET 2004] (c) CD_2Cl_2 (d) CH_2ClBr (a) 11 (b) 12 Which of the following fischer projection formula is same as D -(d) 10 151. (c) 9 Glyceraldehyde [Kerala CET 2005] The number of possible enantiomeric pairs that can be produced 140. (a) $OH \xrightarrow{CH_2OH} CHO$ during mono-chlorination of 2-methylbutane is [Pb. CET 2004] (a) 3 (b) 4 (d) 2 (c) 1 (b) $H \xrightarrow{CH_2OH} OH$ CHO Which one of the following pairs represents stereoisomerism 141. [CBSE PMT 2005] (a) Chain isomerism and rotational isomerism Structural isomerism and geometric isomerism (b) (c) $OH \xrightarrow{CHO}_{H} CH_2OH$ (c) Linkage isomerism and geometric isomerism (d) Optical isomerism and geometric isomerism When isomers have the same structural formula but differ in relative 142. arrangement of atoms or groups are called [CPMT 2000; KCET (Med.) 2000] (a) Mesomers (b) Stereoisomers

CLICK HERE

Get More Learning Materials Here : 📕

(d)
$$H \xrightarrow{CHO} CH_2OH_{HO}$$

(e) $OH \xrightarrow{H} CH_2OH_{CHO}$

Critical Thinking Objective Questions

1. In the given conformation C_2 is rotated about $C_2 - C_3$ bond anticlockwise by an angle of 120° then the conformation obtained is[AIIMS 2004]

- (a) Fully eclipsed conformation
- (b) Partially eclipsed conformation
- (c) Gauche conformation
- (d) Staggered conformation

2.

The molecular formula of diphenyl methane

$$\bigcirc$$
 CH \bigcirc , is $C_{13}H_{12}$
How many structural isomers are possible

How many structural isomers are possible when one of the
hydrogens is replaced by a chlorine atom[CBSE PMT 2004](a) 8(b) 7(c) 6(d) 4

[Orissa JEE 2004]

 CH_3

3. SN^1 reaction is faster in

(a)
$$CH_3CH_2Cl$$
 (b) $CH_3 > CH - Cl$
(c) $CH_3 - C - Cl$ (d) $CH_3 - CH - Cl$
 $CH_3 = CH_3$
(d) $CH_3 - CH - Cl$
 $CH_3 = CH_2$

 How many enantiomer pairs are obtained by monochlorination of 2, 3-dimethylbutane [Kerala PMT 2004]

- (e) One
- Among the following compounds which can be dehydrated very easily is [AIEEE 2004]

(a)
$$CH_3 - CH_2 - CH_3 - CH_2 - CH_3$$

 OH
 OH

(b)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$

(c)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH_2$$

(d)
$$CH_3 - CH_2 - CH - CH_2 - CH_2 - OH_2 - OH_2 - OH_2 - OH_3$$

- 6. Which of the following statements is not characteristic of free radical chain reaction [JIPMER 1997]
 - (a) It gives major product derived from most stable free radical
 - (b) It is usually sensitive to change in solvent polarity
 - (c) It proceeds in three main steps like initiation, propagation and termination
 - (d) It may be initiated by U.V. light Most stable carbanion is

7.

[BHU 2003]

(a) CH_3^- (b) $CH_3CH_2^-$ (c) CH_2^- (d) CH_2^- (e) CH_2^- (f) O_1^- (f) O_2^- (h) CH_3^-

8. Among the following the dissociation constant is highest for

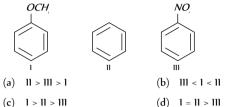
(a)
$$C_6H_5OH$$
 (b) $C_6H_5CH_2OH$

(c)
$$CH_2C \equiv CH$$
 (d) $CH_2NH_2^+Cl^2$

9. Which one of the following compounds is most acidic

[CBSE PMT 2005]

[AIIMS 2004]


(a)
$$Cl - CH_2 - CH_2 - OH$$
 (b) OH
(c) OH (d) OH (c) CH

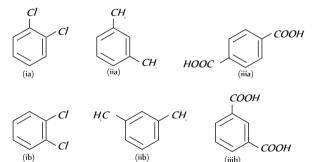
Which one is electrophilic addition [AMU (Engg.) 1999] 10. (a) $CH_3 - CH_3 + Cl_2 \rightarrow C_2H_5Cl + HCl$ (b) $CH_3CH = O + HCN \rightarrow (CH_3)_2 C(OH)CN$ (c) $(CH_3)_2 C = O + HCN \rightarrow CH_3 CH (OH) CN$ (d) $CH_2 = CH_2 + Br_2 \rightarrow CH_2BrCH_2Br$ 11. A compound has 3 chiral carbon atoms. The number of possible optical isomers it can have [DCE 2004] (a) 3 (b) 2 (c) 8 (d) 4 How many chiral isomers can be drawn from 2-bromo, 3-chloro 12. [DCE 2003] butane (a) 2 (b) 3 (d) 5 (c) 4 Number of isomers of C_4H_{10} is 13. [CBSE PMT 1996; AFMC 1997; RPMT 2002; MP PMT 1997] (a) 2 (b) 3 (d) Isomerism not exist (c) 4 The number of possible isomers for compound $C_2H_3Cl_2Br$ is[MP PMT 1999 14. (a) 2 (b) 3 (d) 5 (c) 4

15. The optically active tartaric acid is named as D-(+)- tartaric acid because it has a positive [IIT-JEE 1999]

- (a) Optical rotation and is derived from D-glucose
- pH in organic solvent (b)
- Optical rotation and is derived from D(+) glyceraldehyde (c)
- (d) Optical rotation only when substituted by deuterium
- 16. Among the following compounds (1-111) the correct order of reaction with electrophilic reagent is [CBSE PMT 1997]

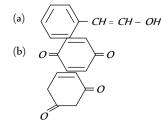
- 17. Carbocation which is most stable
 - $CH_{3}CH_{2}^{+}$ CH_3^+ (b)
 - $C_6H_5CH_2^+$ (d) $CH_3CH_2CH_2^+$ (c)
- 18. Tautomerism is exhibited by

(a)


[CBSE PMT 1997; KCET 2002]

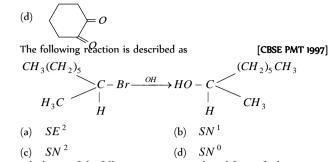
[BHU 2003]

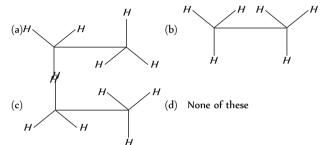
- $(CH_3)_3 CNO$ (b) $(CH_3)_2 NH$ (a)
- (c) $R_3 CNO_2$ (d) RCH_2NO_2

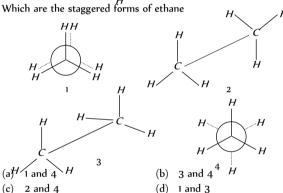

19. Which of the following will have geometrical isomers

- [MP PET 1996; MP PMT 1997; AFMC 1997] (b) 2-butene (a) 2-methylpropene (c) 1-butene (d) Propene
- 20. Examine the following three pairs of possible isomers

(ib) (iib) (iib) (iib) Now state whether the pairs represent identical compounds or different isomers


- (a) All three pairs represent different compounds
- (b) (*ia*) and (*ib*) are identical; (*iia*) and (*iib*) are identical; and (*iiia*) and (iiib) are identical
- (ia) and (ib) are isomers; (iia) and (iib) are identical; and (iiia) (c) and (iiib) are isomers
- (d) (ia) and (ib) are identical; (iia) and (iib) are identical, and (iiia) and (iiib) are isomers
- 21. Tautomerism is exhibited by


(c)

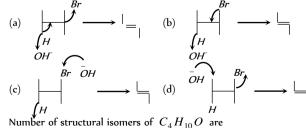

22

24.

23. Which one of the following represents eclipsed form of ethane

Which of the following is the most stable cation 25. [CBSE PMT 1988; MNR 1988; AllMS 1985]

(a)
$$CH_3CH_2\overset{+}{C}HCH_3$$
 (b) $CH_3-\overset{+}{C}CH_3$
 $|$
 CH_3

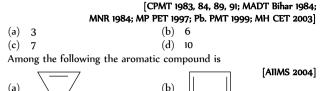

(c)
$$CH_3CH_2CH_2CH_2$$
 (d) CH_3^+

In a reaction of C_6H_5Y , the major product (> 60%) is *m*-isomer, 26. so the group Y is [AIIMS 1997; UPSEAT 2003]

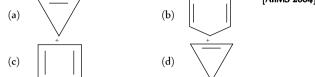
(a)
$$-COOH$$
 (b) $-NH_2$

(c)
$$-OH$$
 (d) $-Cl$

Dehydrohalogenation in presence of OH^- is correctly represented 27. bv [Orissa JEE 2004]



28.


Get More Learning Materials Here :

CLICK HERE

[IIT-JEE 1998]

29.

- 30. Which of the following compounds are not arranged in order of decreasing reactivity towards electrophilic substitution [DCE 2003] (a) Fluoro benzene > chloro benzene > bromo benzene
 - Phenol > *n*-propyl benzene > benzoic acid (b)
 - Chloro toluene > para-nitro toluene > 2-chloro-4-nitro toluene (c)
 - (d) Benzoic acid > phenol > n-propyl benzene

[Pb. CET 2004]

3

4

42.

43.

(a)
$$\overset{+}{C}_{2}H_{5}$$
 (b) $(CH_{3})_{3}\overset{+}{C}$

(c)
$$(C_6H_5)_3C$$
 (d) $C_6H_5CH_2$

Which one of the following species is most stable 32. [IIT-JEE 1995]

(a)
$$p - O_2 N - C_6 H_4 - C H_2$$

(b) $p - C H_3 O - C_6 H_4 - C H_2$

$$(c) \quad p - Cl - C_6H_4 - CH$$

Most stable carbonium ion is

(d)
$$C_6H_5 - CH_2$$

31.

Which of the following gives most stable carbocation by dehydration[RPMT 2002] 33. (a) $(CH_3)_2 CH - OH$

(b) $(CH_3)_3 C - OH$

(c)
$$CH_3 - CH_2 - OH$$

(d)
$$CH_3 - CH_2 - O - CH_2 - CH_3$$

- 34. Which of the following orders regarding relative stability of free radicals is correct [UPSEAT 2004] $\begin{pmatrix}b\end{pmatrix}\quad 3^\circ>2^\circ>1^\circ$ (a) $3^{\circ} < 2^{\circ} < 1^{\circ}$ (c) $1^{\circ} < 2^{\circ} > 3^{\circ}$ (d) $3^{\circ} > 2^{\circ} < 1^{\circ}$
- The +/ effect of alkyl groups is in the order [DCE 2002] 35. (a) $2^{\circ} > 3^{\circ} > 1^{\circ}$ (b) $1^{\circ} > 2^{\circ} > 3^{\circ}$ $(c) \quad 3^\circ > 2^\circ > 1^\circ$ (d) None of these
- 36. Which one has asymmetric C-atom [Roorkee 1995] (a) $CH_3 - CH_2 - CH_2$

(b)
$$CH_3 - CH - -CH - CH_3$$

 $|$ $|$ $|$ Br CH_3
(c) $CH_2 - CH_2 - CH - CH_2$

Т

Which of the following compounds will show metamerism 37. [KCET 1996]

(a)
$$CH_3COOC_2H_5$$
 (b) $C_2H_5 - S - C_2H_5$
(c) $CH_3 - O - CH_3$ (d) $CH_3 - O - C_2H_5$

38. How carbon molecule many atoms in the $HCOO - (CHOH)_2 - COOH$ are asymmetric

$$[MP \text{ PET 2001}]$$
(a) 1
(b) 2
(c) 3
(d) None of these
(Roorkee 1999)
(a) CH_3NH_2
(b) RO^-
(c) $AlCl_3$
(d) CH_3MgBr
0. Which of the following has the highest nucleophilicity

[IIT-JEE Screening 2000]

(a) $F^ OH^{-}$ (b) NH_2^- (c) CH_3^- (d)

Keto-enol tautomerism is found in 41.

 \mathbf{O}

(a)
$$H_5C_6 - C - H$$

(b) $H_5C_6 - C - C_6H_5$
(c) $H_5C_6 - C - CH_3$
(d) $H_5C_6 - C - CH_2 - C - CH_3$

Which of the following compounds will show geometrical isomerism[11T-JEE 199 (a) 2-butene (b) Propene (c) 1-phenylpropene (d) 2-methyl-2-butene Which behaves both as a nucleophile and electrophile [IIT-JEE Screening 1991; Pb. CET 1985]

(a) $CH_3 NH_2$ (b) CH_3Cl (c) CH_3CN (d) CH_3OH

The number of optical isomers of an organic compound having n44. asymmetric carbon atoms will be [MP PET 1994]

- (a) 2^{n+1} (b) n^2
 - (d) 2^{n-1} 2^{n} (c)

45. Total number of isomers of C_6H_{14} are

[IIT-JEE 1987; DPMT 1983; CPMT 1991;

- MNR 1990; MP PET 1995; UPSEAT 2001]
- (a) 4 (b) 5
- (c) 6 (d) 7

With a change in hybridisation of the carbon bearing the charge, the 46. stability of a carbanion increase in the order

[DCE 2003]

(a) $sp < sp^2 < sp^3$ (b) $sp < sp^3 < sp^2$ (c) $sp^3 < sp^2 < sp$ (d) $sp^2 < sp < sp^3$

The C - C bond length of the following molecules is in the order[11T-JEE 1991] 47.

- (a) $C_2H_6 > C_2H_4 > C_6H_6 > C_2H_2$
- (b) $C_2H_2 < C_2H_4 < C_6H_6 < C_2H_6$
- (c) $C_2H_6 > C_2H_2 > C_6H_6 > C_2H_4$

_			10.
18 .		on $CH_3CHO + HCN \rightarrow CH_3CH(OH)CN$ a chiral	
	centre is pro	duced. This product would be	11.
		[CBSE PMT 1995]	
	(a) Laevoro	otatory (b) Meso compound	
	(c) Dextroi	rotatory (d) Racemic mixture	
19.		carbon molecule 'A' has all the carbon and hydrogen in	10
		ne. All the carbon-carbon bonds are of same length less	12.
		put more than 1.34Å. The $C-C$ bond angle will be [BVP 20]	03]
	(a) $109^{\circ}2$	28' (b) 100°	
	(c) 180°	(d) 120°	
60.	How many	structural isomers are possible for a compound with	13.
	molecular fo	rmula C_3H_7Cl [CBSE PMT 2001]	
	(a) 2	(b) 5	
	(c) 7	(d) 9	
			14.
	_		
		Assertion & Reason	15.
	'R'	-ssenion & neason	
		For AIIMS Aspirants	
lead	the assertion a	nd reason carefully to mark the correct option out of	
	ptions given be		16.
a)		rtion and reason are true and the reason is the correct	
5)	,	of the assertion. ertion and reason are true but reason is not the correct	
"		of the assertion.	17.
2)		is true but reason is false.	
d) (e)		ion and reason both are false. is false but reason is true.	
.)	n assertion		18.
	Assertion	: Aniline is better nucleophile than anilium ion.	
	Reason	: Anilium ion have + <i>ve</i> charge. [AllMS 1996]	
	Assertion	: Neopentane forms one mono substituted compound.	19.
	Reason	: Neopentane is isomer of pentane.	20.
		[AIIMS 2001]	-0.
	Assertion	: Trans-2-butene on reaction with Br_2 gives meso-	
		2, 3-dibromobutane.	21.
	Reason	: The reaction involves syn-addition of bromine.[AllMS 200	3]
	Assertion	: Cis-1, 3-dihydroxy cyclohexane exists in boat conformation.	
	Reason	: In the chair form, there will not be hydrogen	22.
		bonding between the two hydroxyl groups.	
	Accontion	[AIIMS 2003]	
	Assertion	 Hydroxyketones are not directly used in Grignard reaction. 	
	Reason	: Grignard reagents react with hydroxyl group.	
		[A11MS 2003]	
	Assertion	: Benzyl bromide when kept in acetone water it	
	Reason	produces benzyl alcohol. : The reaction follows <i>SN</i> mechanism.	
		[AllMS 2003]	
	Assertion	: Carbon possesses property of catenation.	
	Reason	: Carbon atoms form double as well as triple bonds	
	A - · ·	during catenation. $C H$	
	Assertion	: Olefins have the general formula $\ C_n H_{2n+1}$.	
	-		
	Reason	: There is one double bond between two carbon	
) .		atoms in their molecules.	
) .	Reason Assertion		

(d) $C_2H_4 > C_2H_6 > C_2H_2 > C_6H_6$

	Reason	: All isomeric paraffins have same parent name.
10.	Assertion	: A mixture of glucose and <i>m</i> -dinitrobenzene can be separated by shaking it with ether.
	Reason	: Glucose is soluble in water.
1.	Assertion	: Tertiary carbonium ions are generally formed more easily than primary carbonium ions.
	Reason	 Hyperconjugative as well as inductive effect due to additional alkyl groups stabilize tertiary carbonium ions.
2.	Assertion	: Heterolytic fission involves the breaking of a
3]		covalent bond in such a way that both the electrons of the shared pair are carried away by one of the atoms.
	Reason	: Heterolytic fission occurs readily in polar covalent bonds.
3.	Assertion	: The order of reactivity of carbonium ions is $2^\circ > 3^\circ > 1^\circ.$
	Reason	: Carbon atom in carbonium ions is in <i>sp</i> ³ state of hybridisation.
4.	Assertion	: Free radicals are short lived and highly reactive.
	Reason	: Free radicals are highly unstable.
5.	Assertion	: Each carbon in ethylene molecule is sp^2 hybridised.
	Reason	: The $H - C - H$ bond angle in ethylene molecule is 120°.
6.	Assertion	: Cyclohexanone exhibits keto-enol tautomerism.
	Reason	: In cyclohexanone, one form contains the keto group (C = O) while other contains enolic group (-C = C - OH).
7.	Assertion	: Staggered form is less stable than the eclipsed form.
	Reason	 The conformation in which the bond pairs of two central atoms are very far from one another is called staggered form.
8.	Assertion	: <i>Trans</i> isomers are more stable than <i>cis</i> isomer.
	Reason	: The <i>cis</i> isomer is the one in which two similar groups are on the same side of double bond.
9.	Assertion	: Propadiene is optically active.
	Reason	: Propadiene has a plane of symmetry.
0.	Assertion	: Lactic acid is optically active.
	Reason	: A symmetry in the inner structure of the organic compound causes optical activity.
21.	Assertion	: Same number of electron pairs are present in
	Reason	resonance structures. : Resonance structures differ in the location of electrons around the constituent atoms.
22.	Assertion	 Carbon-oxygen bonds are of equal length in carbonate ion.
	Reason	 Bond length decreases with the multiplicity of bond between two atoms.

Get More Learning Materials Here : 💻

Structural and stereo isomerism

Answers

Bonding and hybridisation in organic compounds

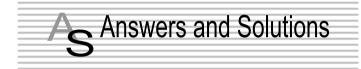
1	b	2	с	3	b	4	b	5	c
6	a	7	b	8	с	9	d	10	a
11	C	12	C	13	с	14	d	15	b
16	а	17	d	18	а	19	а	20	C
21	d	22	d	23	d	24	C	25	C
26	ac	27	C	28	С	29	C	30	d
31	C	32	C	33	d	34	C	35	C
36	а	37	C	38	с	39	d	40	b
41	C	42	a	43	с	44	b	45	b
46	а	47	b	48	с	49	а	50	C
51	C	52	C	53	С	54	а	55	d
56	С	57	C	58	а	59	d	60	a
61	а	62	d	63	С	64	b	65	b
66	b	67	b						

Dipole moment, resonance and reaction intermediates

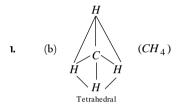
1	b	2	b	3	b	4	С	5	с
6	d	7	C	8	d	9	b	10	C
11	d	12	b	13	a	14	c	15	d
16	b	17	d	18	b	19	а	20	a
21	а	22	а	23	b	24	C	25	C
26	b	27	b	28	b	29	d	30	b
31	C	32	C	33	а	34	d	35	a
36	a	37	b	38	b	39	а	40	d
41	d	42	b	43	d	44	b	45	b
46	a	47	b	48	d	49	b		

Organic reactions and their mechanism

1	d	2	C	3	С	4	b	5	а
6	C	7	C	8	d	9	d	10	d
11	b	12	d	13	c	14	d	15	C
16	a	17	a	18	d	19	b,c	20	а
21	d	22	a	23	d	24	a	25	a
26	b	27	d	28	b	29	b	30	d
31	d	32	C						


1	а	2	а	3	b	4	С	5	b
6	b	7	d	8	C	9	C	10	C
11	b	12	а	13	а	14	C	15	C
16	a	17	b	18	d	19	a	20	d
21	b	22	а	23	а	24	a	25	d
26	b	27	d	28	C	29	С	30	d
31	а	32	d	33	b	34	а	35	C
36	а	37	b	38	b	39	C	40	d
41	C	42	a	43	d	44	a	45	b
46	d	47	d	48	b	49	C	50	а
51	b	52	d	53	b	54	d	55	d
56	d	57	b	58	d	59	b	60	d
61	b	62	a	63	d	64	d	65	b
66	b	67	b	68	a	69	d	70	a
71	a	72	C	73	C	74	a	75	a
76	d	77	a	78	b	79	a	80	a
81	а	82	b	83	b	84	d	85	d
86	b	87	d	88	а	89	b	90	c
91	b	92	a	93	а	94	d	95	d
96	b	97	b	98	а	99	С	100	b
101	b	102	C	103	b	104	b	105	a
106	C	107	a	108	a	109	b	110	C
111	a	112	d	113	b	114	d	115	b
116	а	117	a	118	b	119	a	120	d
121	b	122	c	123	а	124	b	125	a
126	c	127	C	128	d	129	b	130	d
131	d	132	a	133	d	134	а	135	b
136	c	137	b	138	a	139	b	140	d
141	d	142	b	143	b	144	a	145	c
146	d	147	a	148	с	149	b	150	b
151	c								

Critical Thinking Questions


1	с	2	d	3	с	4	е	5	а
6	b	7	C	8	d	9	b	10	d
11	C	12	C	13	a	14	b	15	C
16	C	17	C	18	d	19	b	20	d
21	acd	22	C	23	b	24	C	25	b
26	a	27	a	28	C	29	а	30	d
31	C	32	b	33	b	34	b	35	C
36	bc	37	b	38	b	39	abd	40	C
41	cd	42	ac	43	C	44	C	45	b
46	C	47	b	48	d	49	d	50	a

Assertion & Reason

1	a	2	b	3	c	4	d	5	а
6	а	7	b	8	е	9	b	10	b
11	a	12	b	13	d	14	b	15	b
16	а	17	е	18	b	19	е	20	b
21	е	22	b						

Bonding and hybridisation in organic compounds

3. (b) $CH_2 = CH_2$ both the carbon atoms are sp^2 hybridised.

5.	(c) Type	<i>s</i> -character
	sp^3	25%
	sp^2	33.33%
	sp	50%

6. (a)
$$CH \equiv CH$$

7. (b) sp^2 and sp^3

$$CH_{3} - CH_{sp^{2}} = CH_{sp^{2}} - CH_{2} - CH_{3}$$

$$CH_{3} - CH_{3} = CH_{3} - CH_{3}$$

$$CH_{3} = CH_{3} = CH_{3}$$

8. (c) $CH_{3} - C_{3}^{sp^{3}} - OH_{3}^{ch}$

All the carbon atoms are sp^3 hybridized.

9. (d)
$$CH_{3} - CH = CH_{p^{2}} - CH_{2} - CH_{p^{2}} = CH_{p^{2}} CH_{p^{2}} =$$

11. (c)
$$sp$$
 and sp^2

$$N \equiv \frac{c}{1} - \frac{c}{2}H = CH_2$$

.

13. (c) π electrons = 10.

 π bonds =5

_

hence electrons are double

14. (d) Cyclobutadienyl anion
$$(C_4H_4)^{2-}$$

$$\begin{bmatrix} HC & CH \\ HC & CH \end{bmatrix}^{T} \pi \text{ electrons} = 8.$$

-2-

15. (b)
$$CH_3 - CH_3 \xrightarrow{\text{Homolytic}} CH_3^{\bullet} + CH_3^{\bullet}$$

Methylfreeradicals

free radical is formed which is sp^2 -hybridized.

$$H \xrightarrow{C - H} O$$
 one odd electron
$$H \xrightarrow{C - H} O$$

16. (a)
$$Br - CH_{sp^2} = CH - Br \xrightarrow{H_2}_{\text{Catalyst}} Br - CH_2 - CH_2 - Br_{sp^3}$$

4

17. (d) (i)
$$CH_3 - CH_2 - CH_2 - CH_3$$

only sp^3 hybridized carbon

(ii)
$$CH_{3} - CH = CH - CH_{3}$$

Both sp^2 and sp^3 hybridized carbon.

(iii)
$$CH_{2}^{sp^{2}} = CH - CH_{2}^{sp^{2}} = CH_{2}^{sp^{2}}$$

Only sp^2 hybridized carbon.

(iv)
$$H - \underset{sp}{C} \equiv \underset{sp}{C} - H$$

18.

Only *sp* hybridized carbon.

(a) (i) Benzene and its derivatives are always

planar because all the carbon in benzene are sp^2 hybridized.

(v)
$$CH_2 = C \overset{\checkmark}{\underset{H}{\overset{\checkmark}{\overset{\sim}}} H$$

Both the carbon are sp^2 hybridized. Therefore planar.

19. (a)
$$H$$
$$Cl = Cl = Cl$$
$$H$$
$$Cl = Cl$$
$$H$$
$$Sp^{3}hybridization$$

20. (c)
$$H - C = C - C - H$$
; $\Pi \sigma$ bonds and $\Pi \pi$ bond.
 $H - H - H = H$

21. (d)
$$CH_3 - CH - CH_2 - CH_3$$

 CH_3

It has 3 $C\!H_3$ groups, one $C\!H_2$ group and one $C\!H$ group.

 $O^{\rm or}_{-\rm xylene}$ It has 18 σ bonds and 3 π bonds.

24.

$$C-C=\sigma$$
 bonds = 6

$$C - H = \sigma \text{ bonds } \underline{= 6}$$

$$sp^{3} \qquad \underline{12}$$

$$sp^{2} \qquad \qquad sp^{3} \qquad sp^{3}$$

Cyclo hexene Two carbon atoms are sp^2 -hybridized while remaining 4 are sp^3 hybridized.

25. (c)
$$\overset{1}{CH}_{2} = \overset{2}{CH} - \overset{3}{C} = \overset{4}{C} - \overset{5}{CH}_{2} - \overset{6}{CH}_{3}$$

3-hexyne-1-ene
Three π bonds.

26. (a, c) Carbonium ions an *sp* hybridized species.

$$H \rightarrow C - H \qquad CH_{3} \rightarrow C - H \\ H (CH_{3}^{+}) \qquad H (C_{2}H_{5}^{+})$$
27. (c) (a) $H - C \equiv C - H$ (b) $CH_{2} = CH - C = O$
 H
(c) $CH_{3}CH = CH_{2}$ (d) $CH_{3} - CH = CH - C - OH$
 1π bond $CH_{3} - CH = CH - C - OH$
 0
28. (c) $N \equiv C$
 $p = C$
 $N \equiv C$
 $p = C$
 $N \equiv C$
 $p = C$
 $p = N$
 Q

29. (c) $H \stackrel{\sigma}{-} C \stackrel{\sigma}{=} \stackrel{\sigma}{C} \stackrel{\sigma}{-} H \quad 3\sigma$ and 2π bonds are present. **30.** (d) Vinyl acetylene there are 6 unhybridised orbitals.

$$CH_2 = CH - C = CH$$

$$sp^2 sp^2 sp sp$$

$$1 \quad 1 \quad 2 \quad 2$$
(no. of unhybridised orbitals)

 $\label{eq:alpha} \textbf{31.} \qquad (c) \quad \text{Bond energy is maximum for triple bond.}$

32. (c)
$$CH_2 = CH_2 = CH_2 = 5\sigma, 1\pi$$

33. (d) In benzene all 6 carbons are sp^2 hybridised.

34. (c)
$$CH_2 = CH_{sp^2} - CH_{sp^2} = CH_{sp^2}$$

 $SH_{sp^2} = CH_{sp^2} - CH_{sp^2} = CH_{sp^2}$
36. (a) $CH_2 = CH - C \equiv CH$

37. (c) Propyne has one acidic hydrogen.

- **40.** (b) In CCl_4 all bond angles are same *i.e.* of $109^{o}28'$ the carbon is *sp* hybridised.
- **41.** (c) Geometry in sp^2 -hybridisation is trigonal.

42. (a)
$$CH_{sp^2} = C_{sp} = CH_{sp^2} - CH_{3}_{sp^3}$$

43. (c) Single bond has longest distance of bonds so C_2H_6 ethane is correct answer.

47. (b)
$$HC \equiv C - CH_{2} = CH_{2}$$

48. (c) In ethylene molecule carbons are *sp* hybridised so its structure is trigonal planar

49. (a)
$$CH \equiv CH$$

 $sp \qquad sp$
52. (c) 5π bonds are present in naphthalene.

54. (a)
$$H - C = C - C = C$$

 $H - C = C - C = C$
 $H - C = C - C = C$

57. (c)
$$\int_{sp^2}^{1} \frac{2}{sp} = CH_2$$

59. (d)
$$H = H H CH_{2}CH_{3} H CH_{3} H$$

 $H = H H CH_{2}CH_{3} H CH_{3} H$
 $H = H CH_{2} CH_{3} H CH_{3} H$
 $H = H CH_{3} CH_{3} H CH_{3} H$
 $H H CH_{3} H H H H$
 $2, 5 d; methyl 4-ethyl heptane (5 Methyl group)$

60. (a)
$$CH_{3}^{p^{3}} - CO_{2}^{p^{2}} - CH_{3}^{p^{3}}$$
 $CH_{3}^{p^{2}} COH_{3}^{p^{2}}$ Aceticacid

$$\begin{array}{c} {}^{sp^3}_{CH_3} - {}^{sp}_{C} \equiv N \\ \text{Acetonitrile} \end{array} \qquad \qquad \begin{array}{c} {}^{sp^3}_{CH_3} - {}^{sp^2}_{CNH_2} \\ \text{Acetamide} \end{array}$$

61. (a)
$$\begin{array}{c} \downarrow_{2\sigma} \sigma & \downarrow_{\sigma} \\ CH_{2} = CH_{-\sigma} CH_{2} - CH_{2} - C\frac{\pi}{\sigma} N \\ \\ Allykyanide \end{array}$$

Total 9 σ bond and 3 π bond.

62. (d) Because hydrogen is attached with high electronegative element.

63. (c)
$$CH \equiv CH$$

Ethyne
 CH_3

 \gg

CLICK HERE

Get More Learning Materials Here : 📕

64. (b) has 15σ bonds.

65. (b)
$$H = C = H$$

 $H = C = H$

66. (b) The $S^{12\pi}$ and 3π bonds of C-H bond of acetylene is higher in comparison to C-H bond of ethene and ethane. The electrons of the C-H bond in acetylene are strongly held by carbon nuclei. This facilitates the removal of hydrogen as proton.

67. (b) $CH_{3} - CH_{2} = CH_{2}$ $9\sigma 1\pi \& 2L.p$

Dipole moment, resonance and reaction intermediates

1. (b)
$$CH = CH$$

 H_3C

 $\mu = 0$ symmetrical structure.

- (b) Due to presence of two chlorine atom on the same side of carbon atom produces dipole moment in molecule.
- **4.** (c) We know that there is more difference in the electronegativities of hydrogen and chlorine. Therefore *HCl* is a polar compound.

(iii) (iv)
$$C_2H_5OH_{+I}$$

The dipole moment is the highest for Acetophenone.

CH

 (d) Resonance structure of molecule does not have identical bonding.

All the bonds (C-C) are equal in benzene. The C-C bond length is 1.39Å which is in between C-C bond (1.54Å)and C = C (1.34Å).

9. (b) (1) Molecule is planar.
(2)
$$6\pi$$
 electrons are present.

- 11. (d) Benzene is unreactive instead of having 3π bonds because of resonance π -electrons are delocalized.
- 12. (b) Carboxylic acids are easily ionized because there is resonance in carboxylate ion due to π electron shifting so H^+ get ionised very easily.

$$\rightarrow C \underbrace{\bigcirc O}_{\bigcirc O - H} = C \underbrace{\bigcirc O^{-}}_{\bigcirc O} + H$$

13. (a) Due to delocalisation of π electrons benzene has resonance.

(a) $>C^+ = C <$

19.

32.

33.

- **21.** (a) It is hyperconjugation process.
- (a) Triphenyl methyl cation has three benzene resonating ring so it is most stable compound.
- (b) Due to mesomeric effect (+) of OH group the electron density on benzene ring increase. So the electrophile easily attacked on these electron rich center.
- 24. (c) Carbonyl carbon become more reactive toward nucleophilic addition by increasing the +*I* effect of alkyl group so the reactivity order is as

$$HCHO > CH_{3}CHO > CH_{3}COCH_{3}$$

$$H \to C = O \quad CH_{3} \to C = O \quad CH_{3} \to C = O$$

$$H \to C = O \quad CH_{3} \to C = O \quad CH_{3} \to C = O$$

25. (c) The octet of all atoms are complete in structures (a) and (b). In structure (d) electron deficiency of positively charged carbon is duly compensated by lone pair electrons of adjacent oxygen atom while such neighbour group support is not available in structure (c). CH_3

26. (b) $CH_3 - C^+$ Due to (+1) effect of three methyl group 3° CH_3

carbocation is more stable.

+

27. (b)
$$CH_3 - CH_3 + COCH_3 + COCH_3$$

28. (b)
$$C_6H_5 - CH_2^{\overline{C}} > CH_3CH_2^{\overline{C}}$$

Benzylcarbanion $(CH_3)_2CH^{\overline{C}} > (CH_3)_3C^{\overline{C}}$
Isopropyl carbanion Carbanion

- **30.** (b) 3° alcohol on dehydrogenation gives most stable carbonium ion.
 - (c) Without intermediate reaction take place as under

$$CH_3 - CH = CH_2 + HBr \rightarrow CH_3 - CH - CH_3$$

(According to markownikoff rule)

But the halogen bonded with terminal carbon so it take place in presence of peroxide by free radical mechanism.

$$R - O - OR \rightarrow 2RO$$
; $HBr + RO \rightarrow ROH + Br$ [·] peroxide

$$CH_3 - CH = CH_2 + Br \rightarrow CH_3 - CH - CH_2 - Br$$

$$CH_3 - CH - CH_2Br + HBr \rightarrow$$

 $CH_3 - CH_2 - CH_2Br + Br$

34. (d)
$$CH_3 - C^o > CH_3 - CH > CH_3 - CH_2$$

 $3^o CH_3 - 2^o 1^o$

Greater the no. of alkyl groups attached to the carbon atom carrying the odd electrons, greater is the delocalization of odd electron and hence more stable is the free radical.

35. (a)
$$\overrightarrow{R} = \overrightarrow{\overrightarrow{C}} R$$

36. (a)
$$CH_{3}^{-} > R - CH_{2}^{-} > R - CH^{-} > R - C_{-}^{-}$$

Methyl
carbanion
 1^{o} 2° 3°
37. (b) $CH_{3}^{-} - C_{-}^{+} > CH_{3}^{-} - CH^{-} > R - C_{-}^{+}$
 $CH_{3}^{-} - C_{-}^{+} > CH_{3}^{-} - C_{-}^{+} > CH_{3}^{-} - C_{-}^{+}$
 $CH_{3}^{-} - C_{-}^{+} > CH_{3}^{-} - CH^{-} > CH_{3}^{-} - CH_{2}^{+} > CH_{3}^{+}$
 $CH_{3}^{-} - CH_{3}^{-} - CH^{-} > CH_{3}^{-} - CH_{2}^{+} > CH_{3}^{-}$
 $CH_{3}^{-} - CH_{3}^{-} - CH_{3}^{-}$

Greater the no. of alkyl groups, greater would be the dispersal of the charge and hence more stable will be the carbonium ion. **39.** (a) C-C bond length in benzene is 1.39Å which is in between C-C (1.54Å) and C = C(1.34Å) because of resonance.

R

40. (d)
$$C - Cl \xrightarrow{\text{Heterolytic}}_{\text{bond fission}} C^+ + Cl^-_{\text{Anion}}$$

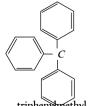
41. (d) $CH_3CH_2OH \xrightarrow{\text{Heterolytic cleavage}}_{CH_3CH_2^+ + OH^-}$
43. (d) $CH_3 - C - Cl \xrightarrow{SbCl_5} Cl - C - CH_3 + CH_3 - C - Cl$

(1) form

44. (b) The reaction of an alkyl halide or aryl halide with benzene in the presence of a Lewis acid, generally $AlCl_3$ is known as Friedel Craft's reaction.

(d) form

45. (b)
$$NO_2$$
 gives only monosubstitution product as $-NO_2$ group is meta directing and only one m -position is possible in m -dinitrobenzene.


46. (a) According to Huckel ruel, all aromatic compounds must have $(4n+2)\pi$ electrons where n is an integer, *i.e.*, n = 0, 1, 2, 3, ... and possesses unusual stability due to the complete delocalisation of π -electrons.

47. (b)
$$H - O - H$$
, : NH_3 , $R - O - R$ - nucleophiles SO_3 has

electron deficient centre (a reagent which can accept an electron pair in a reaction, is called an electrophile)

- **48.** (d) Chlorine atom is *orth-para* directing group.
- **49.** (b) Stability of carbonium ions.

tertiary alkyl > secondary alkyl > primary alkyl > methyl. More the number of alkyl groups, the greater the dispersal of positive charge and therefore, more the stability of carbonium ion is observed.

triphenymethyl cation

Dispersal of positive charge increases with the increase in the number of benzene ring.

Organic reactions and their mechanism

(d) It is
$$SN^2$$
 type of reaction.

1. 3.

5.

9.

10.

11.

12.

13

14.

(c)
$$Cl_2 \xrightarrow{\text{Light}} 2Cl^{\bullet}$$

 $CH \xrightarrow{Cl^{\bullet}} O \xrightarrow{CHCl} + H^+$ (Freeradical substitution

- (a) It is nucleophilic substitution reaction which is in first order.
- (d) All cations are expected to act as Lewis acid since they are electron deficient in nature. However cation such as Na^+ , K^+

etc. (Inert gas configuration) have a very little tendency to accept electrons. Therefore they do not acts as lewis acids in friedel Craft's reaction.

(d) The process of nitration takes place as below

$$HONO_2 + 2H_2SO_4 \Rightarrow H_3O^+ + 2HSO_4^- + NO_2^+$$

(nitronium ion

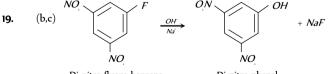
The electrophile responsible for nitration is NO_2^+ ion.

(b) Dehydrohalogenation of an alkyl halide on presence of alcoholic potash is an example of elimination reaction.

$$R - CH_2CH_2 - Cl + \underbrace{KOH}_{alc.} \xrightarrow{\Delta}$$
$$RCH = CH_2 + KCl + H_2O$$

(1,1 dichloroethane)

It is addition reaction.


Which is according to Markownikoff rule.

(c)
$$CH \equiv CH + H_2 \rightarrow CH_2 = CH_2$$

That is called addition reaction.

- (d) When methane gas is treated with chlorine in the presence of sunlight, one hydrogen of methane replaced by the chlorine atom and forms methyl chloride. The mechanism involved in this reaction is free radical mechanism. So it is an example of free radical substitution reaction.
- 15. (c) Due to OH^- attack it is nucleophilic substitution.
- **16.** (a) Electron deficient species (in complete octet) acts as an electrophile *i.e.* BCl_3 .
- 17. (a) NO_2^{\oplus} is produced when conc. HNO_3 reacts with conc. H_2SO_4 .

$$HNO_3 + H_2SO_4 \rightarrow HSO_4^- + NO_2^{\oplus} + H_2O_2^{\oplus}$$

 (d) Phenol will undergo electrophilic substitution more readily than benzene.

- **20.** (a) $A_{l}^{\text{Di nitro fluoro benzene}}_{l_{3}}$ is lewis acid *i.e.*, electron deficient compound. So it is electrophile.
- **21.** (d) $CH_3 O^-$ is the strongest nucleophile which is capable of acting as donar of electon pair.

CLICK HERE

22. (a) The phenyl ring having H - N group is activated while another one is deactivated due to -C-, so electrophilic 0

aromatic bromination will occur at para position with respect to H - N < group inactivated ring.

The non reactivity of the chlorine atom in vinyl chloride may 23 (d) be explained from the molecular orbital point of view as follows. If the chlorine atom has sp^2 hybridization the C - Clbond will be a σ -bond and the two lone pairs of electron would occupy the other two sp^2 orbitals. This would leave a p-orbital containing a lone pair and this orbital could not conjugate with the π bond of the ethylenic link. Thus two M.O.S. will be required to accommodate these four π electrons. Further more since chlorine is more electronegative than carbon, the electron will tend to be found in the chlorine atom has now lost full control of the one pair and so, is less negative than it would have been had there been no conjugation. Since two carbon atoms have acquired a share in the lone pair, each atom acquires a small negative charge. Hence, owing to delocalisation of bonds (through conjugation), the vinyl chloride molecule has an increased stability. Before the chlorine atom can be displaced by some other group the lone pair must be localised again on the chlorine atom. This requires energy and so the chlorine is more firmly bound than has no conjugation occurred.

$$CH_{-}-CH-CI_{0}$$
 $CH_{-}-CH-CI_{0}$

Nucleophiles are those substances which can donate a pair of 24 (a) electrons. These can be neutral or negative. The nucleophilic power depends on the tendency of species to donate electrons. This is more, when an electron pushing group (+1 group) is present. Among the alkyl groups, those having higher number of C-atoms will push more, hence ethyl > methyl.

$$\begin{array}{c} O \\ \parallel \\ C,H, >> & & \\ \hline \\ (+1) \\ CH, + & CH, \\ (+1) \\ CH, + & CH, \\ (-1) \end{array}$$

- Conjugated acid of Cl^- is a stronger acid i.e., HCl. 25. (a)
- 26. Saytzeffs product. (b)
- 29. (b) If the dehydrohalogenation of an alkyl halide can yield more than one alkene, then according to the saytzeff rule, the main product is the most highly substituted alkene.

$$HO^{-} H H H H H$$

$$H - C^{-} C C - C - H$$

$$H^{-} C + C^{-} C - C - H$$

$$H^{-} C + C^{-} C - C - H$$

$$H^{-} C + C^{-} C + C - H$$

$$H^{-} C + C^{-} C + C + C^{-} C + C^{$$

- (d) Halogenation of alkanes takes place in presence of light 30. (sunlight or UV) or at elevated temperature via free radical.
- All the given species undergo nucleophilic substitution reaction. 31. (d) This reactivity can be explained in terms of the nature of C - Xbond which is highly polarised covalent bond due to large difference in the electronegativities of carbon and halogen atoms. δ^+ δ

32. (c) Increasing + 1 effect
$$(CH_3)_3 C > (CH_3)_2 CH > CH_3 CH_2 > CH_3$$

Structural and stereo isomerism

(b)
$$CH_3 - CH_3 - COOH$$

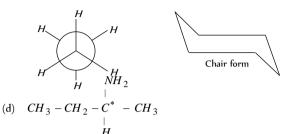
5.

6.

7.

8.

9.


11.

(a)

CLICK HERE

In this structure chiral carbon atom is present since it is optical active.

In ethane staggard form and in cyclohexane chair form is more (b) stable.

Chiral centre is present. Hence, it exists as optical isomers or enantiomorphs.

(c) In
$$C_6H_5CH_2CH_3$$
 chiral centre is absent.

(c) $C_2H_2Br_2$ has three isomers.

(1)
$$H - C = C - H$$
 (2) $CH = CH$
 Br Br Br Br Br Br Br Br

(2)
$$CH_{r} = C \swarrow Br$$

(3)
$$CH_2 = C \ Br$$

1, 1-dibromoethene

11

(b)
$$CH_3 - C^* - CH_2 - CH_3$$

 Cl
2-Chlorobuta ne

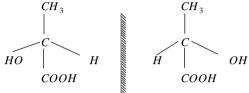
because they contain chiral carbon atom.

12. (a)

$$H$$

13. (a) $CH_3 - C^* - CH_2 -$

In other compounds chiral carbon is absent.


Ball is achiral where other objects are chiral because objects and (c) 14. their mirror images are non-super imposable

 CH_3

15. (c)
$$X X X X$$

orthol, 2 X
orthol, 2 X
Para 1, 4 Meta 1, 3
H
I7. (b) $CH_3 - C^* - COOH$

OH

Only one chiral centre. Hence two optical isomers are possible.

No. of optical isomer = 2^{1} (where n = no. of chiral carbon) = $2^{1} = 2$.

19. (a)
$$CH_3 - CH_2 - CH_2 - CH_3$$
 and $CH_3 - CH - CH_3$
n-butane
$$CH_3$$
Iso-butane

20. (d) $CH_3 - C^* - CH_2 - CH_3$ Chiral structure is that in which

one carbon atom is attached to 4 different atoms or groups.

21. (b)
$$CH_3 - CH_2 - CH = CH_2 \& CH_3 - CH = CH - CH_3$$

1-butane CH_3

22. (a)
$$HC = CH$$
 and $HC = CH$
 $CH_3 CH_3 CH_3 CH_3$
(Cis) (Trans)
2-butene 2-butene

Z

23. (a) Four groups linked to carbon atom are different

$$\gamma$$
 C^*

25. (d) Five isomers of $C_4 H_8$

$$CH_{3}$$

$$CH_{3} - C = CH_{2}$$

$$H_{2}C - CH_{3}$$

$$CH_{3} - C = C - CH_{3}$$

$$H_{2}C - CH_{3}$$

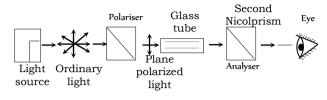
$$H_{2}C - CH_{3}$$

$$H_{2}C - CH_{3}$$

$$CH_{3} - C = C - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - C = C - CH_{3}$$


$$CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} -$$

26. (b) Polarimeter is an instrument used for measuring the optical rotation. It consists of two Nicol prisms, one called the polarizer (near the light source) and the other called the analyser (near the eye). In between the polarizer and analyser, a glass tube containing the solution of an optically active compound is placed.

Ray diagram of polarimeter
27. (d)
$$CH_3 - CH_2 - CH_2 - CH_3$$
 and $CH_3 - CH - CH_3$
 $I - butane$
 CH_3
 $Iso-butane$

28. (c) Metamerism is a special types of isomerism shown by secondary amines, ethers and ketones.

29. (c)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH$$

Pentan -1-ol
 $4 - 3 - CH - CH_2 - CH_2 - OH$
 $CH_3 - CH - CH_2 - CH_2 - OH$
 $CH_3 - CH_2 - CH - CH_2 - OH$
 $CH_3 - CH_2 - CH - CH_2 - OH$
 $CH_3 - CH_3 - CH_2 - OH$
 $CH_3 - CH_2 - CH_2 - OH$
 $CH_3 - CH_3 - CH_3 - CH_2 - OH$
 $CH_3 - CH_3 - CH_3 - CH_3 - OH$
 $CH_3 - CH_3 - CH_3 - CH_3 - OH$
 $CH_3 - OH$
 $CH_$

30. (d) Position isomers:

$$CH_3 - CH_2 - CH_2 - CH_2 - OH$$
 and
Butan-1-ol

$$CH_3 - CH_2 - CH - CH_3$$

 OH
Butan-2-ol

Functional isomers:

$$CH_3CH_2CH_2 - CH_2 - OH$$
 and $C_2H_5 - O - C_2H_5$
Butanol
Metamers: $C_2H_5 - O - C_2H_5$ and $CH_3 - O - C_3H_7$
Diethylether
Methyl propyl ether

31. (a) 1.
$$CH_3 - CH_2 - CH_2 - CH_2 - OH_{Butan-1-ol}$$

2. $CH_3 - CH_2 - CH - CH_3$
 $OH_{Butan-2-ol}$
3. $CH_3 - CH - CH_2 - OH_{CH_3}$
 $2 methyl propan-1-ol$
 CH_3
4. $CH_3 - C - CH_3$
 $OH_{2-Methyl propan-2-ol}$
32. (d) $C_4H_{10}O$ have six isomers are possible

1.
$$CH_3CH_2CH_2CH_2 - OH$$

Butan-1-ol

2.
$$CH_3 - CH_2 - CH - CH_3$$

 OH
Butan-2-ol
3. $CH_3 - CH - CH_2 - OH$
 CH_3
2-Methyl propan -1-ol
 CH_3
4. $CH_3 - C - CH_3$
 OH
2-Methyl-propan -2-ol
5. $CH_3 - O - C_3H_7$
Methyl propyl ether
6. $C_2H_5 - O - C_2H_5$
Diethyl ether

33. (b)
$$CH = CH$$
 Cl $CH = CH$
 Cl Cl Cl Cl Cl Cl
(trans)
34. (a) ${}^{1}CH_{3} - CH = CH - CH = CH - C_{2}H_{5}$

1.
$$CH = CH$$
$$CH = CH - C_2H_5$$
$$CH = CH - C_2H_5$$
2.
$$CH = CH - C_2H_5$$

3.

$$CH_{3} - CH = HC$$

$$C_{2}H_{5}$$

$$C_{2}H$$

36. (a) Molecular symmetry

$$H = C - OH$$

$$H = C - OH$$

$$H = C - OH$$

$$COOH$$

Mesotartaric acid is optically inactive due to internal compensation *i.e.* the effect one half of the molecule is neutralized by other.

37. (b)
$$CH_3 - C^* - COOH$$
 * chiral centre is present.
 OH
38. (b) $COOH - C^* - CH_2 - CH_3$

One chiral centre. Therefore two forms are possible.

39. (c) Optical isomerism and geometrical isomerism.

Diethyl ether $C_2H_5 - O - C_2H_5$ is position isomer and not stereoisomer.

41. (c)
$$C_2H_5 - O - C_2H_5$$
 and $CH_3 - O - C_3H_7$ are metamers.

42. (a)
$$CH_3 - CH_2 - CH_2 - OH$$
 and $CH_3 - CH - CH_3$
 $n - propyl alcohol$
 OH
Iso-propyl alcohol

are position isomers of each other.

44.

- (a) $R N \stackrel{=}{=} C$ and $R C \equiv N$ are functional isomers.
- **45.** (b) Optical isomerism because chiral centre is present H

$$(CH_3)_2 - C = CH - C^* - COOH$$

46. (d) Butanone $CH_3 - C - CH_2 - CH_3 (C_4H_8O)$ is not an O

isomer of
$$C_2H_5 - O - C_2H_5 (C_4H_{10}O)$$

47. (d) Chair and boat form differ in energy by 44
$$k/mol$$
.

48. (b) $CH_3 - O - CH_2 - CH_3$ and $CH_3CH_2CH_2 - OH$

ethylmethyl ether and propylalcohol are functional isomers.

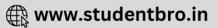
49. (c)
$$CH_3 - CH_2 - CH_2O - C_2H_5$$

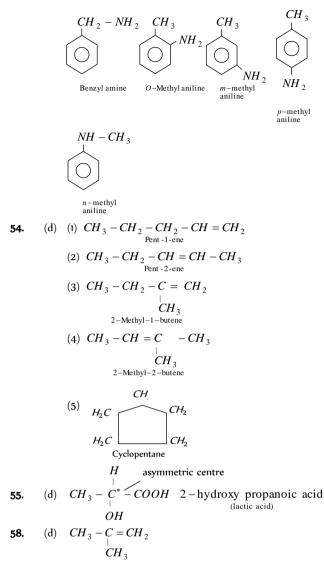
Ethoxy propane

$$CH_3 - CH_2 - CH_2 - O - C_2H_5$$

Propoxy ethane

Both are same compounds.


- **50.** (a) $CH_3 CO CH_3$ and $CH_3 CH_2 CHO$ are functional isomers.
- **51.** (b) Three isomers are possible


52. (d) Diastereoisomers – Optical isomers which are not mirror images of each other.

e.g.

$$\begin{array}{ccc}
COOH & COOH \\
H-C-OH & and & H-C-OH \\
H-C-OH & HO-C-H \\
COOH & COOH \\
\hline
Diastercoisomers \\
\end{array}$$

53. (b) $C_7 H_9 N$ has 5 isomers

2-methyl propene does not show geometrical isomerism.
(b) Conformers - Conformation arises because of free rotation around C-C bond axis.

(d)
$$CH_3 - C_* - C_* - COOH$$

 $Br Br$

59.

60.

Number of enantiomers = 2^n (*n* = asymmetric Carbon atom) = $2^2 = 4$.

61. (b) $C_6H_5C \equiv N$ and $C_6H_5N \equiv C$ are functional isomers. **62.** (a) $DCH_2 - CH_2 - CH_2 - Cl$ Others are chiral

$$CH_{3} - CH_{2} - \begin{matrix} H & H \\ CH_{3} - CH_{2} - \begin{matrix} C^{*} \\ C^{*} \\ Cl \end{matrix} = D; \qquad CH_{3} - \begin{matrix} C^{*} \\ C^{*} \\ Cl \end{matrix} = CH_{2} - CH_{2} -$$

63. (d) Cis and trans 2-butene are geometrical isomers.

$$CH_{3} = CH_{4} \text{ and } CH_{3} = CH_{1}$$

$$CH_{3} = CH_{3} = CH_{3}$$

$$H_{1}$$

$$H_{1}$$

$$H_{1}$$

$$H_{1}$$

$$H_{1}$$

$$H_{2}$$

$$H_{3}$$

$$H_{2}$$

$$H_{3}$$

64.

Cl A carbon atom which is attached to four different atoms or groups is called a chiral or asymmetric carbon atom. such a carbon atom is often marked by an asterisk.

65. (b)
$$R - C \equiv N$$
 and $R - N \equiv C$ are functional isomers.
Isocyanide

66. (b) Glucose and fructose have similar molecular formula with difference of functional group, so they are functional isomers.

67. (b) 2-butanol
$$(CH_3 - CH - CH_2 - CH_3)$$
 is optically active
 OH

because it has asymmetric carbon atom.

69. (d) Ethane has all single (σ) bonds so there is minimum resistance in bond rotation.

Secondary butyl amine is optically active.

73. (c) Neopentane and isopentane are chain isomers.

 NH_2

$$CH_3 = CH_3$$

 $CH_3 = CH_2 = CH_3$ and $CH_3 = CH_2 = CH_3 = CH_3$
 $CH_3 = CH_3$

- **75.** (a) Due to single bond there is no hindrance
- 77. (a) Only 1-phenyl-2-butene will exhibit *cis-trans* isomerism.
- 79. (a) Geometrical isomerism is not possible in propene.

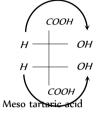
$$CH_3 - CH_2 - CH_2 - CH_3 & CH_3 - CH - CH_3$$

84. (d) Restricted rotation is essential condition for geometrical isomerism.

89. (b) Three isomeric structures are possible for $C_4 H_8$

$$H_2C = CH - CH_2 - CH_3$$

Get More Learning Materials Here : 📕


CLICK HERE

80

88.

$$CH_{3} - CH = CH - CH_{3}$$
$$CH_{3} - C = CH_{2}$$
$$\downarrow^{I}$$
$$CH_{3}$$

- **92.** (a) Enantiomers have same chemical properties but different physical properties.
- **93.** (a) Meso isomer have two achiral carbon with opposite spin so it becomes optically inactive

95. (d)
$$\begin{array}{c} Br \\ C = C \\ I \\ (Z \& E) \end{array} \begin{array}{c} CI \\ F \\ CI \\ F \end{array} \begin{array}{c} Br \\ C = C \\ I \\ (Z \& E) \end{array} \begin{array}{c} F \\ CI \\ C = C \\ I \\ (Z \& E) \end{array} \begin{array}{c} Br \\ C = C \\ I \\ (Z \& E) \end{array} \begin{array}{c} Br \\ C = C \\ F \\ (Z \& E) \end{array}$$

- **96.** (b) Due to formation of the plane of symmetry by the syn addition of hydrogen in the triple bond, the compound formed is optically inactive.
- **101.** (b) Racemic mixture is combination of *d* and *l* isomers.
- **102.** (c) $Cl_2C = CH CH_2 CH_2 CH_2$. It can't show geometrical isomerism due to unsymmetrical alkene.
- **103.** (b) Geometrical isomerism.

104. (b)
$$CH_3 - CH_2 - CH_2 - CH_2 - Cl_2$$

- **105.** (a) Functional isomerism
- **109.** (b) Non superimposible on its mirror image.

$$CH_3$$
 CH_3 CH_3

112. (d) $CH_3 - CH_2 - CH - CH - CH - CH_3$, it is a chiral compound. OH

114. (d)
$$CH_3 - C - H$$

$$C_2H_5$$

In this structure chiral carbon is present that is why it is optically active.

- **115.** (b) 2-chloro butane will be optically active.
- 118. (b) Structures are mirror images of each other which are non super impossible so they are enantiomers.
- 120. (d) Both have one chiral carbon atom hence racemic mixture will be obtain
- 121. (b) Structure have 3-different atoms and group so it is unable to show geometrical isomerism
- 122. (c) Metamerism is shown by the different arrangement of alkyl group about functional group.

124. (b)
$$CH_3 - C - Cl$$
, it is a chiral compound.
 Br

Η

126. (c)
$$CH_3 - O - CH_3$$
 and C_2H_5OH are functional isomers.

- **127.** (c) Both are enantiomer.
- **128.** (d) $CH_3COOC_2H_5$ shows tautomeric isomerism.

$$O \qquad OH \\ CH_3 - C - O - CH_2 - CH_3 \Rightarrow CH_2 = C - OC_2H_3$$

$$CH_3 \qquad CH_3 \qquad CH_3 \\ (b) \qquad H - C - Cl \qquad CH_3 \qquad CH$$

2, 3 dichloropentane

129.

130.

(d) Gaseous density of both ethanol and dimethyl ether would be same under identical condition of temperature and pressure while the rest of these three properties vapour pressure, boiling point and heat of vaporization will differ as ethanol has hydrogen bonding where as ether does not.

132. (a)
$$\begin{array}{c} CH_{3} \\ H \end{array} > C = C < \begin{array}{c} CH_{3} \\ H \end{array} \qquad \begin{array}{c} CH_{3} \\ H \end{array} > C = C < \begin{array}{c} H \\ H \\ CH_{3} \\ H \end{array} > C = C < \begin{array}{c} H \\ CH_{3} \\ H \end{array} > C = C < \begin{array}{c} H \\ CH_{3} \\ H \end{array}$$

Cis-trans isomerism shown by compound which have double or triple bond by which they restrict their rotation, since 2 butyne have no hydrogen on triple bonded carbon.

$$CH_3 - C \equiv C - CH_3$$
 [It does not show cis-trans]
2 butyne

133. (d) Because it contain asymmetric carbon atom.

$$CH_3 - CH_2 - CH - COOH$$

 $CH_3 - CH_2 - CH - COOH$
 H_1

135. (b) $HC \equiv C - C - CH_3$ shows optical isomerism because of Cl

molecule is unsymmetrical. That is called chiral.

136. (c) Nitroalkanes exhibit tautomerism. In it, $\alpha - H -$ atom is labile and form nitrolic acid.

$$H_{3}C - CH_{2} - N \swarrow_{O}^{O} \leftrightarrow H_{3}C - CH = N \swarrow_{O}^{OH}$$

CH₃

137. (b) H - C - COOH shows optical isomerism due to presence of OH

asymmetric carbon atom.

138. (a) 2-chloro butane has a chiral carbon atom, hence only it will show optical activity and will possess two enantiomers (one chiral carbon atom).

139. (b) C_4H_7Cl is a monochloro derivative of C_4H_8 which itself exists in three isomeric forms.

(i) $CH_3 - CH_2 - CH = CH_2$: Its possible mono-chloro derivatives are :

🕀 www.studentbro.in

$$CH_3 - CH_2 - CH = CH - Cl$$

CLICK HERE

Get More Learning Materials Here : 📕

2 isomers : cis and trans forms

$$CH_{3} - CH - CH = CH_{2}$$

optically active (exists in two forms)

 $ClCH_2 - CH_2 - CH = CH_2$ (one form)

 $H_3C - CH_2 - C = CH_2$ (one form) (ii) $CH_3 - CH = CH - CH_3$: Its possible monochloro derivatives are : $CH_3 - CH = C - CH_3$ Cl

Exists in two geometrical forms $CH_3 - CH = CH - CH_2Cl$ Exists in two geometrical forms (iii) $CH_3 - C = CH_2$: Its possible monochloro derivatives CH_{2}

are

 $CH_3 - C = CH - Cl$ CH_{3} Only one form $ClCH_2 - C = CH_2$

$$\dot{C}H_3$$

Only one form Thus, the total acylic isomers forms of C_4H_7Cl are 12.

140.

(d)
$${}^{1}CH_{3} - {}^{2}CH_{3} - {}^{3}CH_{2} - {}^{4}CH_{3}$$

Its monochloro derivatives are as follows :

(i)
$$ClCH_2 - \overset{\bullet}{C}H - CH_2 - CH_3$$

 CH_3
or $CH_3 - \overset{\bullet}{C}H - CH_2 - CH_3$

$$H_3 - CH - CH_2 -$$

 H_2Cl

It will exist as enantiomeric pair (*d* and *l*-forms)

(ii)
$$CH_3 - C - CH_2 - CH_3$$

 $CH_3 - CH_3 - CH_3$

no asymmetric C atom

(iv)

(iii)
$$CH_3 - CH - CH - CH_3$$

 CH_2

It will exist as enantiomeric pair (d- and l-forms)

$$CH_3 - CH - CH_2 - CH_2 - Cl$$

No asymmetric carbon atom

Hence, only two enantiomeric pairs will be obtained by the monochlorination of 2-methylbutane.

When isomers have the structural formula but differ in the 141. (d) relative arrangement of atoms or groups in space with in the molecule, these are known as sterioisomers and the phenomenon as sterio isomerism. Stereoisomerism is of three

types (i) Geometrical isomerism (ii) Optical isomerism (iii) Conformational isomerism.

ноос

144. (a)
$$CH_3 = CH - CH_2 - CH_3$$
; $CH_3 - CH = CH - CH_3$;
 $CH_3 - C = CH_2$
 CH_3
145. (c) $||$ and $||$
 C

соон

Chirality of carbon compound is because of its tetrahedral 147. (a) nature of carbon.

148. (c)
$$O_2 NHC = CHCl$$

1-chloro-2-nitroethene

1

14

14

For highly substituted alkenes E and Z system of nomenclature is used, which is based on a priority system developed by Cahn, Ingold and Prelog.

Н

49. (b)
$$C_2H_5CHO \xrightarrow{CH_3MgBr}_{H^+/H_2O} C_2H_5 \xrightarrow{I}_{CH_3} OH_1$$

 $\boldsymbol{C}^{*}\xspace$ -chiral carbon as all the four valencies are attached with different substituents or groups.

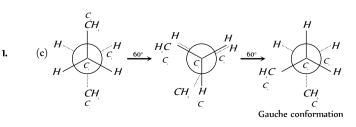
$$CH_3$$

150. (b)
$$Br - C^* - Cl$$
 * asymmetric or chiral carbon H

All the four valencies of carbon are satisfied with different atoms/substituents.

The configuration in which, OH group are on right side, H -151. (c) atom are on left side, CHO group are on upper side & CH_2OH are on lower side found in fischer projection known

as D -configuration.


$$H \xrightarrow{CHO} OH$$

$$CH_2OH$$

$$D$$
-glyceralddhyde
(2)

$$\begin{array}{c} CHO \\ H \longrightarrow \\ (3) \\ (3) \\ CH_2OH \end{array} \xrightarrow{(1)}{OH} \xrightarrow{Intrachange}{H \text{ and } CH_2OH} \xrightarrow{(3)}{CH_2OH} \xrightarrow{(4)}{(4)} H \xrightarrow{(1)}{OH} \\ OH \\ OH \\ OH \\ OH \\ OH \\ CH_2OH \end{array}$$

Critical Thinking Questions

Get More Learning Materials Here :

CLICK HERE

🕀 www.studentbro.in

(2)

2. (d) Only four structural isomers are possible for diphenyl methane.

$$CH_{-} = CH_{-} = C$$

5. (a)
$$CH_3 - CH_2 - \overset{-}{C} - CH_2 - CH_3 \xrightarrow{H^+} OH$$

$$CH_{3}$$

$$CH_{3} - CH_{2} - \bigcup_{\oplus}^{I} - CH_{2} - CH_{3}$$

The more stable carbocation is generated thus more easily it will be dehydrated.

- $\textbf{6.} \qquad (b) \quad \text{This option is not characteristics of free radical chain reaction.}$
- **7.** (c) Due to NO_2 group in benzene ring, CH^{-}

NO

is most stable carbanion.
$$NO_2$$

8. (d) Dissociation of proton from $CH_3 - NH_3Cl^-$ is very difficult due to -l effect of Cl^- and N^+ while in C_6H_5OH due to resonance stabilization of phenoxide ion proton eliminate easily similarly due to *H*-bonding in $C_6H_5CH_2OH$ it can be eliminate and $CH_3C \equiv CH$ show acidic character by triple bond by which proton can be dissociate.

Electron withdrawing group increases acidic character due to -I and -R effect of NO_2 hence orthonitrophenol is most acidic.

10. (d) Halogenation on alkene occurs by electrophilic addition.

11. (c) The number of possible optical isomers $= 2^n$

(where '*n*' is the number of chiral *c*-atoms) = $2^3 = 8$

(c) 2-bromo, 3-chloro-butane has 2 chiral carbon atoms, hence has $2^2 = 4$ optical isomers.

12.

$$CH_{3} - CH_{3} - C$$

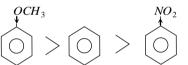
13. (a) $CH_3 - CH_2 - CH_2 - CH_3$, $CH_3 - CH - CH_3$ n-Butane CH_3 CH_3 L_3 -butane

14. (b)
$$C_2H_3Cl_2Br$$
 three isomers are possible

$$CH_3 - C - Cl$$

 Br
 Br
 Cl
 $Br - CH_2 - CH$
 Br
 Br
 Br
 Br

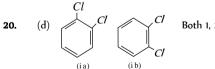
$$Cl - CH_2 - CH_1$$
 1-bromo-1, 2-dichloroethane


15. (c) D(+)-tartaric acid has positive optical rotation and is derived from D(+) glyceraldehyde.

16. (c)
$$1 > 11 > 11$$

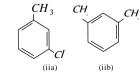
17.

18.


19.

Methoxy group is electron releasing it increases electron density of benzene nucleus while $-NO_2$ decreases electron density of benzene.

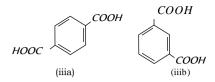
(c) Due to resistance benzyl carbonium ion is most stable.


(d)
$$R - CH_2 - N = R - CH = N OH_{O^-}$$

(b) $CH_3 = CH = CH_3 CH_3 CH_3$

Both 1, 2-dichloro benzene

Hence, identical compounds.

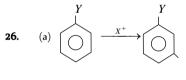

ce, identical compounds.

Both, 1, 3-dimethyl benzene

Hence, identical compounds.

Get More Learning Materials Here :

(iiia) and (iiib) are position isomers.


21. (a,c,d) (a)

$$(a,c,d) (a) \qquad \bigcirc -CH = CH - OH = (enol) \\ (enol) \qquad \bigcirc -CH_2 - C = O \\ H \\ (Keto) \qquad H \\ (Keto) \qquad H \\ (Keto) \qquad (Keto) \qquad \bigcirc -OH \\ (enol) \qquad \bigcirc O \qquad (Keto) \qquad \bigcirc O \qquad (CH_2)_5 - CH_3 \\ (c) \qquad \bigcirc -CH_3(CH_2)_5 \qquad (CH_2)_5 \qquad (CH_2)_5 - CH_3 \\ (c) \qquad \bigcirc -CH_3(CH_2)_5 \qquad (CH_2)_5 \qquad (CH_2)_5 - CH_3 \\ (c) \qquad (CH_3(CH_2)_5 \qquad (CH_3(CH_2)_5 \ (CH_3(CH_2)_$$

(c) $C - Br \xrightarrow{OH^-}_{Optical inversion} HO - C \xrightarrow{HO}_{H} CH_3$ In this reaction inversion of configuration takes place this is

called optical inversion. It is an example of SN^2 reaction (Bimolecular Nucleophillic Substitution).

- 23. (b) This option shows eclipsed form of ethane.
- **24.** (c) 2^{-} and 4^{+} forms of ethane are staggered.
- **25.** (b) $(CH_3)_3 C^+$ 3° carbonium ion is most stable.

Y = -COOH because it is meta directing group while $-NH_2$. -OH and -Cl are *O* and *P* directing groups.

28. (c) $C_4 H_{10} O$ have 7 isomers out of which 4 are alcohols and 3 are ethers.

1.
$$CH_3 - CH_2 - CH_2 - CH_2 - OH_1$$

 n -butyl alcohol
2. $CH_3 - CH_2 - CH - CH_3$
 OH_3
Sec -butyl alcohol

3.
$$CH_3 - CH - CH_2 - OH_2$$

 CH_3
Isobutyl alcohol
4. $CH_3 - C - CH_3$
 OH_3
Ter-buty-alcohol
5. $CH_3 - CH_2 - O - CH_2 - CH_3$
Diethyl ether
6. $CH_3 - O - CH_2 - CH_2 - CH_3$
Methyl propyl ether
7. $CH_3 - O - CH < CH_3$
Methyl isopropyl ether

(a) According to Huckel rule for aromaticity the molecule must be planar, cyclic system having delocalised $(4n + 2)\pi$ electron where *n* is an integer equal to 0, 1, 2, 3, thus the aromatic comp. have delocalised electron cloud of

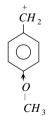
2, 6, 10 or 14π electron cyclopropenyl cation electron (n = 0) so it is aromatic.

- (d) -COOH group is a deactivating group, hence benzoic acid is less reactive towards electrophilic substitution than phenol.
- **31.** (c) In the triphenyl methyl carbonium ion the π electrons of all the three benzene rings are delocalised with the vacant *p*-orbital of central carbon atom. So, it is resonance stabilised. It is the most stable of all the carbonium ions given

$$CH_3$$

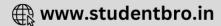
The ion $CH_3 - C^+$ is stabilised by hyperconjugation, a $CH_3 - CH_3$

second order resonance.



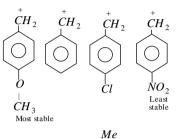
29.

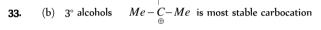
30.


Nitro-group is electron withdrawing therefore decreases stability.

NO,

Methoxy group is electron releasing. Therefore increases stability by donating electron.


Get More Learning Materials Here : 📕



Chlorine is also electron withdrawing but its effect is less than $-NO_2$ group.

Hence, correct order of stability.

34. (b) Due to the increasing no. of hyperconjugative structures free radical stabilise following as $3^\circ > 2^\circ > 1^\circ$.

35. (c)
$$3^{\circ} > 2^{\circ} > 1^{\circ}$$

$$CH_{3} \xrightarrow{CH_{3}} C^{\oplus} \xrightarrow{CH_{3}} H^{H}$$

$$CH_{3} \xrightarrow{C} C^{\oplus} \xrightarrow{C} H^{-} C^{\oplus} \xrightarrow{C} CH_{3} \xrightarrow{H} C^{\oplus}$$

$$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{H} H$$

$$H \xrightarrow{H} H$$

36. (b,c)
$$CH_3 - CH_3 - CH_3 - CH_3$$
 and $CH_3 - CH_2 - CH_3 - CH_3$
Br $CH_3 - CH_3 - CH$

37. (b)
$$C_2H_5 - S - C_2H_5$$
 and $CH_3 - S - C_3H_7$
Diethyl thioether Methyl propyl thioether

are metamers.

38. (b)
$$HCOO - CH - CH - COOH$$

Two carbon atoms in the molecule are asymmetric.

39. (a,b,d)
$$CH_3NH_2$$
, $R - O$ -, $CH_3 - Mg - Br$: are nucleophiles due to presence of lone pairs.

(c) CH_3^- has the highest nucleophilicity. 40.

41. (c,d)
$$C_{6}H_{5} - C - CH_{3}$$
 and $C_{6}H_{5} - C = CH_{2}$
 $O \qquad O \qquad (enol form)$
 $C_{6}H_{5} - C - CH_{2} - C - CH_{3}$ and
 $C_{6}H_{5} - C - CH_{2} - C - CH_{3}$ and
 $C_{6}H_{5} - C - CH = C - CH_{3}$
 $O \qquad OH$
 $(enol form)$
 OH
42. (a,c) 2-butene

$$CH = CH$$

$$CH_{3} \qquad CH_{3} \qquad CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$CH_{3} - CH = CH$$

$$CH_{3} - CH = CH$$

$$CH_{3} - CH = CH$$

1-phenyl propene

44

$$CH_{3} - C = C - C_{6}H_{5} \text{ and } CH_{3} - C = C - C_{6}H_{5}$$
$$H H H H H (Cis) (Trans)$$

 CH_3CN behaves both as nucleophile and electrophile. 43. (c)

44. (c)
$$2^{n}$$
, $n = no.$ of asymmetric carbon atoms.
45. (b) 1. $CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{3}$

46. (c) Stability of carbanions increase with increase in s-character of hybrid orbitals of carbon bearing charge, hence correct order is $: sp^3 < sp^2 < sp$.

47. (b)
$$C_2H_2 < C_2H_4 < C_6H_6 < C_2H_6$$

 1.20 Å 1.34 Å 1.39 Å 1.54 Å

48. (d)
$$CH_3CHO + HCN \rightarrow CH_3 - CH - CN$$

(Both d and l forms are obtained) Hence, product will be a racemic mixture.

(d) Molecule 'A' is benzene because in benzene bond length is 49. between single and double bond.

(a) Two isomers
$$CH_3 - CH - CH_3$$
 and $|$

$$CH_3 - CH_2 - CH_2Cl$$
 are possible for C_3H_7Cl .

Assertion & Reason

(a) It is fact that aniline is better nucleophile than anilium ion. Anilium ion contain +ve charge, which reduces the tendency to donate lone pair of electron $C_6H_5NH_3^+$.

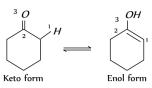
Aniliumion

Therefore, both assertion and reason are true.

CLICK HERE

50.

1.

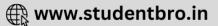


- (b) Neopentane is isomer of pentane and neopentane forms only one substitution product. Both assertion and reason are true but reason is not a correct explaination of assertion. Neopentane forms mono substituted product due to presence of four identical methyl groups present on carbon atom.
- **3.** (c) The assertion that *trans-2* butene reacts with Br_2 to product meso-2, 3-dibromobutane is correct but it does not involve *syn*addition of Br_2 .
- 4. (d) Here both assertion and reason are incorrect because *cis*-1, 3dihydroxy cyclohexane exist in chair conformation and in chair conformation hydrogen bonding is present.
- (a) Hydroxy ketones are not directly used in Grignard reagent. Grignard reagents are very reactive. Therefore, they react with hydroxyl group. Here both are correct.
- 6. (a) The assertion that on keeping benzyl bromide in acetone water it produces benzyl alcohol is correct. Because $C_6H_5CH_2Br$ hydrolysed to produce $C_6H_5CH_2OH$. This conversion is of
 - SN^2 mechanism.
- (b) Catenation property of carbon is primarily due to its small size. Electronic configuration and unique strength of carbon-carbon bonds.
- 8. (e) Olefins are unsaturated hydrocarbons containing two hydrogen atoms less than the corresponding paraffin *i.e.* there is one double bond between two carbon atoms in their molecules and they have the general formula $C_n H_{2n}$.
- **9.** (b) Less reactivity of saturated hydrocarbons are due to presence of single bonds between carbon atoms.
- 10. (b) Glucose is insoluble in ether.
- 11. (a) An alkyl group attached to the positively charged carbon of a carbonium ion tends to release electrons towards that carbon; thus the positive charges gets dispersed as the alkyl group becomes some what positively charged itself. More the number of alkyl groups, the greater is the dispersal of positive charge and therefore more easily it will be formed.
- 12. (b) Heterolytic fission occurs when the two atoms differ considerably in their electronegativities and shared pair of electrons is carried by more electronegative atom.
- 13. (d) The order of reactivity of carbonium ions is $1^{\circ} > 2^{\circ} > 3^{\circ}$.

Carbon atom in carbonium ion is in sp^2 state of hybridisation. The three hybridized orbitals lie in the same plane and are involved in the formation of three σ bonds with three atoms or groups while the unhybridised *p*-orbital remains vacant.

- 14. (b) Since free radicals contain odd electrons, so they are short lived and they readily try to pair up the odd electrons to form neutral molecules, that is why they are highly reactive.
- **15.** (b) Each carbon atom in ethylene is attached to two hydrogen atoms by single covalent bonds and to another carbon atoms by a double bond. Since each carbon is attached to three other atoms, it uses sp^2 hybrid orbitals and an unhybridised p_Z orbital to form its bond. Each C-H bond is a σ bond resulting from the overlap of 1s orbital of hydrogen atom and sp^2 orbital of a carbon atom. One C-C bond results from the linear overlap of sp^2 orbitals one from each carbon atom. One π bond results from the lateral overlap of two unhybridised p_Z orbitals, one from each carbon atom.

16. (a) In cyclohexanone keto enol tautomerism is as follows



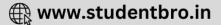
- 17. (e) The staggered form is more stable than the eclipsed form because the potential energy of staggered form in which the bond pairs of two carbons are far away from each other is minimum. Also the *H*-atoms are as far apart as possible and non bonded interaction between them is maximum. In occupied form, the *H*-atom are very close and so the increased overlap between them non-bonded orbitals is repulsive. That is why staggered form is more stable than eclipsed form.
- 18. (b) Trans isomer is more stable than cis isomer because in cis isomer, the bulky groups are on the same side of the double bond. The steric repulsion of the groups makes the cis isomer less stable than the trans isomer in which the bulky groups are far apart. (They are on the opposite side of the double bond).
- **19.** (e) 1, 2-propadiene is not optically active because the terminal sp^2 -hybridised carbons have the same atoms *i.e. H*-atoms. As a result, it has a plane of symmetry passing through the three carbon atoms and hence the molecule is optically inactive.
- 20. (b) Lactic acid is a chiral molecule because it has a chiral carbon atom or asymmetric carbon atom and is therefore optically active.
- **21.** (e) Resonance structures contain the same number of unpaired electrons.

22. (b) CO_3^{2-} shows resonance and thus all the three bonds are of identical bond length.

$$\begin{array}{c} O = C - O^- \leftrightarrow O^- - C = O \leftrightarrow O^- - C - O^- \\ | & | \\ O_- & O_- & O \end{array}$$

Get More Learning Materials Here :

General Organic Chemistry


	The most stable conformatio		12.	On monochlorination of 2-m compounds is	nethyl butane, the total number of chiral [IIT-JEE Screening 2004]		
	(a) Skew boat	(b) Eclipsed	1997]	(a) 2	(b) 4		
		· · ·		(a) $\frac{1}{2}$ (c) 6	(d) 8		
		(d) Staggered	13.	An isomer of ethanol is	(-) -		
Which of the following undergoes nucleophilic substitution by SN ¹ mechanism [CBSE PMT 2005]				[DPMT 1982, 88; CPMT 1973, 75, 78, 84; IIT-JEE 1986; BHU 1984, 85; EAMCET 1993; MP PET 1995;			
	(a) Benzyl chloride	(b) Ethyl chloride			RPET 1999; BHU 2000; AFMC 2002		
	(c) Chlorobenzene	(d) Isopropyl chloride		(a) Methanol	(b) Dimethyl ether		
	Which type of isomerism is s	hown by propanal and propanone	[CPMT 2004]	(c) Diethyl ether	(d) Ethylene glycol		
	(a) Functional group	(b) Metamerism	14.	Due to the presence of an ur	npaired electron, free radicals are		
	(c) Tautomerism	(d) Chain isomerism		(a) Chemically reactive	(b) Chemically inactive		
	Which of the following exhib	its optical isomerism		(c) Anions	(d) Cations		
		BHU 1980; NCERT 1983; A11M3 MNR 1993; MP PMT 199	Tertiary alkyl halides are practically inert to substitution by S_{N^2}				
	(a) Butanol-1	(b) Butanol-2	-	mechanism because of	(h) herefelikter		
	(c) Butene-1	(d) Butene-2		(a) Insolubility(c) Inductive effect	(b) Instability(d) Steric hindrance		
		bearing the positive charge in the	[Pb. PMT 1998; Mi	(c) inductive effect I CFT 2002 The decreasing order of nucleo	ophilicity among the nucleophiles		
	(a) sp^2 -hybridized state	(b) sp^3d -hybridized state		(i) $CH_3 C - O^-$	(ii) CH_3O^-		
		(d) sp^3 -hybridized state		0			
	Which of the following is not	an electrophile [CBSE PM1]	ſ 2001]		(iv) $H_3C - \bigvee_{\parallel}^{\square} S - O^-$ O		
	(a) Cl^+	(b) <i>Na</i> ⁺	-	(iii) <i>CN</i> ⁻	(iv) $H_3C - \bigvee S - O^-$		
					0		
	(c) H^+	(d) BF_3		is	[AIEEE 2005]		
	Heterolytic bond dissociatic sequence	n energy of alkyl halides follow [AMU	rs the 2000]	(a) (i), (ii), (iii), (iv)	(b) (iv), (iii), (ii), (i)		
	(a) $R-F > R-Cl > R$	-Br > R - I	17.	(c) (ii), (iii), (i), (iv)	(d) (iii), (ii), (i), (iv)		
	(b) $R - I > R - Br > R - Br$	-Cl > R - F	Which of the following is opt				
	(c) $R - I > R - F > R - F$		(a) Butane	(b) 4-methylheptane			
	(d) $R - Cl > R - Br > R$		10	(c) 3-methylheptane	(d) 2-methylheptane		
	(d) $K - Cl > K - Br > K$ The shape of carbonium is	— I > K — Г [AMU (Engg.)	18.	Correct configuration of the	ronowing is		
	(a) Planar	(b) Pyramidal	[צצבי ו	CH_3			
	(c) Linear	(d) None of these		Н ОН	[A11MS 2005]		
	Which of the following comp			CH 3 OH			
	the following comp	[MP PE]	ſ 2001]				
	(a) HCHO	(b) <i>CH</i> ₃ <i>CHO</i>	1	(a) 1S, 2S	(b) 1S, 2R		
	(c) CH_3COCH_3	(d) HCOOH		(c) 1R, 2S	(d) 1R, 2R		
			19 .		shown by 2, 3-dichlorobutane		
	In which bond angle is the h		1991]		[AIEEE 2005]		
	(a) sp^3	(b) sp^2		(a) Distereo	(b) Optical		
	(c) <i>sp</i>	(d) sp^3d		(c) Geometric	(d) Structural		
	How many primary amines a	re possible for the formula C_4H_1	Who synthesised the first organic compound urea in the laboratory $[\mathbf{R}]$				
•	(a) 1	(b) 2		(a) Kolbe	(b) Wohler		
	(a) $(c) = 3$	(d) 2		(c) Fraizer	(d) Berzilius		

Answers and Solutions

CH, H

Get More Learning Materials Here :

CLICK HERE ≫

(SET -23)

4.

Staggard form is most stable because of minimum repulsion between bulky methyl groups.

- 2. (a) Due to more stable carbocation.
- 3. (a) When two compounds have similar molecular formula but differ in the functional group then the isomerism is called functional group isomerism *i.e.* CH_3CH_2CHO and O

(b)
$$CH_3 - C^* - CH_2 - CH_3$$

Because it has chiral carbon atom.

- 5. (a) The central carbon atom in carbonium ion is sp^2 hybridised and it has three sp^2 hybrid orbitals for single bonding to three substituents.
- **6.** (b) Na^+ is not an electrophile.
- 7. (b) R I > R Br > R Cl > R F
- **8.** (a) Carbonium ion is planar species
- ${\bf 9.} \qquad (c) \quad {\rm Ketones \ show \ tautomerism. \ They \ form \ keto \ and \ enol \ form$

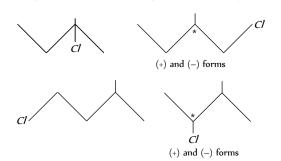
$$O \qquad OH \\ CH_3 - C - CH_3 \rightleftharpoons^{\text{Tautomerism}} CH_3 - C = CH_2$$

10. (c) Type Bond angle sp^3 109.5° sp^2 120° sp^3d 90° and 120° sp 180°

n. (d)
$$CH_3 - CH_2 - CH_2 - CH_2 - NH_2$$

(1-aminobutane)
 $CH_3 - CH_2 - CH_1 - CH_3$
 NH_2
(2-aminobutane)

$$CH_{3}$$


$$CH_{3} - C - CH_{3}$$

$$NH_{2}$$
(2-Methyl-2-aminopropa ne)
$$CH_{3} - CH - CH_{2} - NH_{2}$$

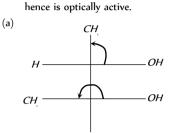
$$CH_{3}$$

(2-Methyl-1-aminopropa ne)

12. (b) The possible monochlorinated products of 2-methyl butane are

Therefore, a total of four chiral compounds are obtained.

- **13.** (b) Dimethyl ether is an isomer of ethanol.
- $\label{eq:alpha} \textbf{(a)} \quad \mbox{Free radicals are very reactive due to the presence of free e.}$
- **15.** (d) Due to steric hinderance **16.** (c) (ii) > (ii) > (i) > (iv)

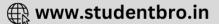

(c) (ii) > (iii) > (i) >
$$CH_3$$

(c) $CH_3CH_2^*CHCH_2CH_2CH_3$ has a chiral carbon atom and

17.

18.

ŀ


Following the ${}^{\!\!\!\!H}$ procedure outlined under 'Golden Rule' the absolute configuration is 1s, 2s.

9. (b)
$$H \xrightarrow{CH_3} Cl, H \xrightarrow{CH_3} Cl, H$$

 $H \xrightarrow{CH_3} Cl, H \xrightarrow{CH_3} Cl, H$
 $CH_3 \xrightarrow{CH_3} H$
 $CH_3 \xrightarrow{CH_3} H$
 $H \xrightarrow{CH_3} H$

 (b) Wohler synthesised the first organic compound urea in the laboratory.

Get More Learning Materials Here :

